{"title":"Graph-Enhanced Spatial-Temporal Network for Next POI Recommendation","authors":"Zhaobo Wang, Yanmin Zhu, Qiaomei Zhang, Haobing Liu, Chunyang Wang, Tong Liu","doi":"10.1145/3513092","DOIUrl":null,"url":null,"abstract":"The task of next Point-of-Interest (POI) recommendation aims at recommending a list of POIs for a user to visit at the next timestamp based on his/her previous interactions, which is valuable for both location-based service providers and users. Recent state-of-the-art studies mainly employ recurrent neural network (RNN) based methods to model user check-in behaviors according to user’s historical check-in sequences. However, most of the existing RNN-based methods merely capture geographical influences depending on physical distance or successive relation among POIs. They are insufficient to capture the high-order complex geographical influences among POI networks, which are essential for estimating user preferences. To address this limitation, we propose a novel Graph-based Spatial Dependency modeling (GSD) module, which focuses on explicitly modeling complex geographical influences by leveraging graph embedding. GSD captures two types of geographical influences, i.e., distance-based and transition-based influences from designed POI semantic graphs. Additionally, we propose a novel Graph-enhanced Spatial-Temporal network (GSTN), which incorporates user spatial and temporal dependencies for next POI recommendation. Specifically, GSTN consists of a Long Short-Term Memory (LSTM) network for user-specific temporal dependencies modeling and GSD for user spatial dependencies learning. Finally, we evaluate the proposed model using three real-world datasets. Extensive experiments demonstrate the effectiveness of GSD in capturing various geographical influences and the improvement of GSTN over state-of-the-art methods.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3513092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
The task of next Point-of-Interest (POI) recommendation aims at recommending a list of POIs for a user to visit at the next timestamp based on his/her previous interactions, which is valuable for both location-based service providers and users. Recent state-of-the-art studies mainly employ recurrent neural network (RNN) based methods to model user check-in behaviors according to user’s historical check-in sequences. However, most of the existing RNN-based methods merely capture geographical influences depending on physical distance or successive relation among POIs. They are insufficient to capture the high-order complex geographical influences among POI networks, which are essential for estimating user preferences. To address this limitation, we propose a novel Graph-based Spatial Dependency modeling (GSD) module, which focuses on explicitly modeling complex geographical influences by leveraging graph embedding. GSD captures two types of geographical influences, i.e., distance-based and transition-based influences from designed POI semantic graphs. Additionally, we propose a novel Graph-enhanced Spatial-Temporal network (GSTN), which incorporates user spatial and temporal dependencies for next POI recommendation. Specifically, GSTN consists of a Long Short-Term Memory (LSTM) network for user-specific temporal dependencies modeling and GSD for user spatial dependencies learning. Finally, we evaluate the proposed model using three real-world datasets. Extensive experiments demonstrate the effectiveness of GSD in capturing various geographical influences and the improvement of GSTN over state-of-the-art methods.