{"title":"REGULAR SOLUTION OF THE INVERSE PROBLEM WITH INTEGRAL CONDITION FOR A TIME-FRACTIONAL EQUATION","authors":"H. Lopushanska, A. Lopushansky","doi":"10.31861/bmj2020.02.09","DOIUrl":null,"url":null,"abstract":"Direct and inverse problems for equations with fractional derivatives are arising in various fields of science and technology. The conditions for classical solvability of the Cauchy and boundary-value prob\\-lems for diffusion-wave equations with fractional derivatives are known. Estimates of components of the Green's vector-function of the Cauchy problem for such equations are known.\n\nWe study the inverse problem of determining the space-dependent component of the right-hand side of the equation with a time fractional derivative and known functions from Schwartz-type space of smooth rapidly decreasing functions or with values in them. We also consider such a problem in the case of data from some wider space of smooth, decreasing to zero at infinity functions or with values in them.\n\nWe find sufficient conditions for unique solvability of the inverse problem under the time-integral additional condition\n\\[\\frac{1}{T}\\int_{0}^{T}u(x,t)\\eta_1(t)dt=\\Phi_1(x), \\;\\;\\;x\\in \\Bbb R^n\\]\nwhere $u$ is the unknown solution of the Cauchy problem, $\\eta_1$ and $\\Phi_1$ are the given functions.\n\nUsing the method of the Green's vector function,\nwe reduce the problem to solvability of an integrodifferential equation in a certain class of smooth, decreasing to zero at infinity functions. We prove its unique solvability.\n\nThere are various methods for the approximate solution of direct and inverse problems for equations with fractional derivatives, mainly for the one-dimensional spatial case. It follows from our results the method of constructing an approximate solution of the inverse problem in the multidimensional spatial case. It is based on the use of known methods of constructing the numerical solutions of integrodifferential equations. The application of the Fourier transform by spatial variables is effective for constructing a numerical solution of the obtained integrodifferential equation, since the Fourier transform of the components of the Green's vector function can be explicitly written.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2020.02.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Direct and inverse problems for equations with fractional derivatives are arising in various fields of science and technology. The conditions for classical solvability of the Cauchy and boundary-value prob\-lems for diffusion-wave equations with fractional derivatives are known. Estimates of components of the Green's vector-function of the Cauchy problem for such equations are known.
We study the inverse problem of determining the space-dependent component of the right-hand side of the equation with a time fractional derivative and known functions from Schwartz-type space of smooth rapidly decreasing functions or with values in them. We also consider such a problem in the case of data from some wider space of smooth, decreasing to zero at infinity functions or with values in them.
We find sufficient conditions for unique solvability of the inverse problem under the time-integral additional condition
\[\frac{1}{T}\int_{0}^{T}u(x,t)\eta_1(t)dt=\Phi_1(x), \;\;\;x\in \Bbb R^n\]
where $u$ is the unknown solution of the Cauchy problem, $\eta_1$ and $\Phi_1$ are the given functions.
Using the method of the Green's vector function,
we reduce the problem to solvability of an integrodifferential equation in a certain class of smooth, decreasing to zero at infinity functions. We prove its unique solvability.
There are various methods for the approximate solution of direct and inverse problems for equations with fractional derivatives, mainly for the one-dimensional spatial case. It follows from our results the method of constructing an approximate solution of the inverse problem in the multidimensional spatial case. It is based on the use of known methods of constructing the numerical solutions of integrodifferential equations. The application of the Fourier transform by spatial variables is effective for constructing a numerical solution of the obtained integrodifferential equation, since the Fourier transform of the components of the Green's vector function can be explicitly written.