Improved and Smoothened Upper Bounds on the Redundancy of the Optimal Fix-Free Code

M. Khosravifard, R. Rashtchi
{"title":"Improved and Smoothened Upper Bounds on the Redundancy of the Optimal Fix-Free Code","authors":"M. Khosravifard, R. Rashtchi","doi":"10.1109/ITW2.2006.323797","DOIUrl":null,"url":null,"abstract":"Recently, Yekhanin guaranteed the existence of fix-free codes with codeword lengths (l<sub>1</sub>, l<sub>2</sub>, ..., l<sub>n</sub>) satisfying Sigma<sup>n</sup> <sub>i=1</sub> 2<sup>-li</sup> les 5/8 or Sigma<sup>n</sup> <sub>i=1</sub> 2<sup>-li</sup>) les 3/4 and min <sub>i</sub>l<sub>i</sub> = 1. In this paper, Ye-Yeung approach in deriving upper bound on the redundancy of optimal fix-free code in terms of a known symbol probability q is extended and applied to the new theorems due to Yekhanin. Also, it is shown that for some values of q, assigning a lfloor-log1/2qrfloor bits codeword to the symbol with probability q is preferable to a lceil-log1/2qrceil bits codeword. Noting this point, we remove the discontinuities in the upper bound curves","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, Yekhanin guaranteed the existence of fix-free codes with codeword lengths (l1, l2, ..., ln) satisfying Sigman i=1 2-li les 5/8 or Sigman i=1 2-li) les 3/4 and min ili = 1. In this paper, Ye-Yeung approach in deriving upper bound on the redundancy of optimal fix-free code in terms of a known symbol probability q is extended and applied to the new theorems due to Yekhanin. Also, it is shown that for some values of q, assigning a lfloor-log1/2qrfloor bits codeword to the symbol with probability q is preferable to a lceil-log1/2qrceil bits codeword. Noting this point, we remove the discontinuities in the upper bound curves
改进并平滑了最优无固定码冗余的上界
最近,Yekhanin保证了码字长度(l1, l2,…)的无固定码的存在性。, ln)满足西格曼i=1 - 2- l5 /8或西格曼i=1 - l3 /4和min ili =1。本文将Ye-Yeung方法推广到已知符号概率q的最优无固定码冗余度上界,并应用到Yekhanin新定理中。此外,还表明,对于某些q值,为概率为q的符号分配1个floor-log1/2qr位码字比分配1个floor-log1/2qr位码字更可取。注意到这一点,我们去掉上界曲线中的不连续点
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信