Feature extraction using discrete wavelet transform for speech recognition

Z. Tufekci, J. Gowdy
{"title":"Feature extraction using discrete wavelet transform for speech recognition","authors":"Z. Tufekci, J. Gowdy","doi":"10.1109/SECON.2000.845444","DOIUrl":null,"url":null,"abstract":"We propose a new feature vector consisting of mel-frequency discrete wavelet coefficients (MFDWC). The MFDWC are obtained by applying the discrete wavelet transform (DWT) to the mel-scaled log filterbank energies of a speech frame. The purpose of using the DWT is to benefit from its localization property in the time and frequency domains. MFDWC are similar to subband-based (SUB) features and multi-resolution (MULT) features in that both attempt to achieve good time and frequency localization. However, MFDWC have better time/frequency localization than SUB features and MULT features. We evaluated the performance of new features for clean speech and noisy speech and compared the performance of MFDWC with mel-frequency cepstral coefficients (MFCC), SUB features and MULT features. Experimental results on a phoneme recognition task showed that a MFDWC-based recognizer gave better results than recognizers based on MFCC, SUB features, and MULT features for white Gaussian noise, band-limited white Gaussian noise and clean speech cases.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

We propose a new feature vector consisting of mel-frequency discrete wavelet coefficients (MFDWC). The MFDWC are obtained by applying the discrete wavelet transform (DWT) to the mel-scaled log filterbank energies of a speech frame. The purpose of using the DWT is to benefit from its localization property in the time and frequency domains. MFDWC are similar to subband-based (SUB) features and multi-resolution (MULT) features in that both attempt to achieve good time and frequency localization. However, MFDWC have better time/frequency localization than SUB features and MULT features. We evaluated the performance of new features for clean speech and noisy speech and compared the performance of MFDWC with mel-frequency cepstral coefficients (MFCC), SUB features and MULT features. Experimental results on a phoneme recognition task showed that a MFDWC-based recognizer gave better results than recognizers based on MFCC, SUB features, and MULT features for white Gaussian noise, band-limited white Gaussian noise and clean speech cases.
基于离散小波变换的语音识别特征提取
我们提出了一种由mel频率离散小波系数(MFDWC)组成的新的特征向量。将离散小波变换(DWT)应用于语音帧的mel尺度对数滤波器组能量,得到MFDWC。使用小波变换的目的是利用其在时域和频域的局部化特性。MFDWC类似于基于子带(SUB)特征和多分辨率(MULT)特征,两者都试图实现良好的时间和频率定位。但是,MFDWC比SUB特征和MULT特征具有更好的时频定位。我们评估了清洁语音和有噪声语音的新特征的性能,并将MFDWC的性能与mel-frequency倒谱系数(MFCC)、SUB特征和MULT特征进行了比较。在一个音素识别任务上的实验结果表明,对于高斯白噪声、带限高斯白噪声和干净语音情况,基于mfdwc的识别器比基于MFCC、SUB特征和MULT特征的识别器具有更好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信