An Improved Symbiotic Organisms Search Algorithm for Multi-objective Simultaneous Optimal Allocation of DSTATCOM and DG Units

S. Dash, S. Mishra, Usharani Raut, A. Abdelaziz
{"title":"An Improved Symbiotic Organisms Search Algorithm for Multi-objective Simultaneous Optimal Allocation of DSTATCOM and DG Units","authors":"S. Dash, S. Mishra, Usharani Raut, A. Abdelaziz","doi":"10.1109/APSIT52773.2021.9641337","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved version of the Symbiotic Organisms Search (SOS) algorithm based on oppositional learning and adaptive chaotic local search strategy for simultaneous optimal allocation of multiple DSTACOMs and different types of DG units in an electric distribution network to minimize power loss, improve the voltage profiles and enhance voltage stability margin. The performance of the improved Symbiotic Organisms Search algorithm and the original Symbiotic Organism Search algorithms are compared applying these for a 33-bus test distribution system.","PeriodicalId":436488,"journal":{"name":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT52773.2021.9641337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an improved version of the Symbiotic Organisms Search (SOS) algorithm based on oppositional learning and adaptive chaotic local search strategy for simultaneous optimal allocation of multiple DSTACOMs and different types of DG units in an electric distribution network to minimize power loss, improve the voltage profiles and enhance voltage stability margin. The performance of the improved Symbiotic Organisms Search algorithm and the original Symbiotic Organism Search algorithms are compared applying these for a 33-bus test distribution system.
DSTATCOM和DG单元多目标同时优化配置的改进共生生物搜索算法
本文提出了一种改进的基于对立学习和自适应混沌局部搜索策略的共生生物搜索(SOS)算法,用于配电网中多个dstacom和不同类型DG机组的同时优化分配,以最大限度地减少功率损耗,改善电压分布,提高电压稳定裕度。将改进的共生生物搜索算法与原有的共生生物搜索算法在33总线测试配电系统中的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信