Evolutionary Resampling for Multi-Target Tracking using Probability Hypothesis Density Filter

Mhd Modar Halimeh, Andreas Brendel, Walter Kellermann
{"title":"Evolutionary Resampling for Multi-Target Tracking using Probability Hypothesis Density Filter","authors":"Mhd Modar Halimeh, Andreas Brendel, Walter Kellermann","doi":"10.23919/EUSIPCO.2018.8553478","DOIUrl":null,"url":null,"abstract":"A resampling scheme is proposed for use with Sequential Monte Carlo (SMC)-based Probability Hypothesis Density (PHD) filters. It consists of two steps, first, regions of interest are identified, then an evolutionary resampling is applied for each region. Applying resampling locally corresponds to treating each target individually, while the evolutionary resampling introduces a memory to a group of particles, increasing the robustness of the estimation against noise outliers. The proposed approach is compared to the original SMC-PHD filter for tracking multiple targets in a deterministically moving targets scenario, and a noisy motion scenario. In both cases, the proposed approach provides more accurate estimates.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A resampling scheme is proposed for use with Sequential Monte Carlo (SMC)-based Probability Hypothesis Density (PHD) filters. It consists of two steps, first, regions of interest are identified, then an evolutionary resampling is applied for each region. Applying resampling locally corresponds to treating each target individually, while the evolutionary resampling introduces a memory to a group of particles, increasing the robustness of the estimation against noise outliers. The proposed approach is compared to the original SMC-PHD filter for tracking multiple targets in a deterministically moving targets scenario, and a noisy motion scenario. In both cases, the proposed approach provides more accurate estimates.
基于概率假设密度滤波的进化重采样多目标跟踪
提出了一种基于序贯蒙特卡罗(SMC)的概率假设密度(PHD)滤波器的重采样方案。它包括两个步骤,首先,识别感兴趣的区域,然后对每个区域进行进化重采样。局部重采样相当于对每个目标进行单独处理,而进化重采样则为一组粒子引入了记忆,提高了估计对噪声异常值的鲁棒性。将该方法与原始SMC-PHD滤波器在确定性运动目标场景和噪声运动场景下的多目标跟踪进行了比较。在这两种情况下,建议的方法提供了更准确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信