Efficient One-Shot Sports Field Image Registration with Arbitrary Keypoint Segmentation

Nicolas Jacquelin, Romain Vuillemot, S. Duffner
{"title":"Efficient One-Shot Sports Field Image Registration with Arbitrary Keypoint Segmentation","authors":"Nicolas Jacquelin, Romain Vuillemot, S. Duffner","doi":"10.1109/ICIP46576.2022.9897170","DOIUrl":null,"url":null,"abstract":"Automatic sports field registration aims at projecting a given image taken with unknown camera parameters to a known 3D coordinate system in order to obtain higher-level information like the position and speed of players. Existing methods generally detect specific visual landmarks on the field and then use an iterative refinement to get closer to the desired calibration. They are usually only compared in terms of precision on a standard benchmark without considering other metrics. However, execution speed is also important, mainly in the context of live broadcast TV and sports analysis. This work introduces a new automatic field registration method achieving excellent performance on the WorldCup Soccer benchmark, while neither depending on specific visible landmarks nor any refinement, resulting in a very high execution speed one-shot model. Finally, to complement the usual Soccer benchmark, we introduce a new Swimming Pool registration benchmark which is more challenging for the task at hand. Code and dataset available at https://github.com/njacquelin/sportsfieldregistration.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automatic sports field registration aims at projecting a given image taken with unknown camera parameters to a known 3D coordinate system in order to obtain higher-level information like the position and speed of players. Existing methods generally detect specific visual landmarks on the field and then use an iterative refinement to get closer to the desired calibration. They are usually only compared in terms of precision on a standard benchmark without considering other metrics. However, execution speed is also important, mainly in the context of live broadcast TV and sports analysis. This work introduces a new automatic field registration method achieving excellent performance on the WorldCup Soccer benchmark, while neither depending on specific visible landmarks nor any refinement, resulting in a very high execution speed one-shot model. Finally, to complement the usual Soccer benchmark, we introduce a new Swimming Pool registration benchmark which is more challenging for the task at hand. Code and dataset available at https://github.com/njacquelin/sportsfieldregistration.
基于任意关键点分割的高效单镜头运动场图像配准
运动场自动配准的目的是将相机参数未知的给定图像投影到已知的三维坐标系中,从而获得运动员的位置和速度等更高层次的信息。现有的方法通常是在野外检测特定的视觉地标,然后使用迭代细化来接近所需的校准。它们通常只在标准基准的精度方面进行比较,而不考虑其他指标。然而,执行速度也很重要,主要是在直播电视和体育分析的背景下。这项工作引入了一种新的自动场地配准方法,在世界杯足球赛基准上实现了出色的性能,同时既不依赖于特定的可见地标,也不依赖于任何改进,从而实现了非常高的执行速度。最后,为了补充通常的足球基准,我们引入了一个新的游泳池注册基准,它对手头的任务更具挑战性。代码和数据集可从https://github.com/njacquelin/sportsfieldregistration获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信