Latent Fingerprint Image Quality Assessment Using Deep Learning

J. Ezeobiejesi, B. Bhanu
{"title":"Latent Fingerprint Image Quality Assessment Using Deep Learning","authors":"J. Ezeobiejesi, B. Bhanu","doi":"10.1109/CVPRW.2018.00092","DOIUrl":null,"url":null,"abstract":"Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a crime scene. They are crucial in crime scene investigations for making identifications or exclusions of suspects. Determining the quality of latent fingerprint images is crucial to the effectiveness and reliability of matching algorithms. To alleviate the inconsistency and subjectivity inherent in feature markups by latent fingerprint examiners, automatic processing of latent fingerprints is imperative. We propose a deep neural network that predicts the quality of image patches extracted from a latent fingerprint and knits them together to predict the quality of a given latent fingerprint. The proposed approach eliminates the need for manual ROI markup and manual feature markup by latent examiners. Experimental results on NIST SD27 show the effectiveness of our technique in latent fingerprint quality prediction.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a crime scene. They are crucial in crime scene investigations for making identifications or exclusions of suspects. Determining the quality of latent fingerprint images is crucial to the effectiveness and reliability of matching algorithms. To alleviate the inconsistency and subjectivity inherent in feature markups by latent fingerprint examiners, automatic processing of latent fingerprints is imperative. We propose a deep neural network that predicts the quality of image patches extracted from a latent fingerprint and knits them together to predict the quality of a given latent fingerprint. The proposed approach eliminates the need for manual ROI markup and manual feature markup by latent examiners. Experimental results on NIST SD27 show the effectiveness of our technique in latent fingerprint quality prediction.
基于深度学习的潜在指纹图像质量评估
潜在指纹是指无意中留在犯罪现场表面上的指纹印。它们在犯罪现场调查中对确定或排除嫌疑人至关重要。确定潜在指纹图像的质量对匹配算法的有效性和可靠性至关重要。为了缓解隐性指纹鉴定人在特征标注上的不一致性和主观性,对隐性指纹进行自动处理势在必行。我们提出了一种深度神经网络来预测从潜在指纹中提取的图像补丁的质量,并将它们编织在一起来预测给定潜在指纹的质量。所提出的方法消除了潜在审查员手动ROI标记和手动特征标记的需要。在NIST SD27上的实验结果表明了该方法在潜在指纹质量预测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信