{"title":"Groups for which it is easy to detect graphical regular representations","authors":"D. Morris, Joy Morris, Gabriel Verret","doi":"10.26493/2590-9770.1373.60A","DOIUrl":null,"url":null,"abstract":"We say that a finite group G is \"DRR-detecting\" if, for every subset S of G, either the Cayley digraph Cay(G,S) is a digraphical regular representation (that is, its automorphism group acts regularly on its vertex set) or there is a nontrivial group automorphism phi of G such that phi(S) = S. We show that every nilpotent DRR-detecting group is a p-group, but that the wreath product of two cyclic groups of order p is not DRR-detecting, for every odd prime p. We also show that if G and H are nontrivial groups that admit a digraphical regular representation and either gcd(|G|,|H|) = 1, or H is not DRR-detecting, then the direct product G x H is not DRR-detecting. Some of these results also have analogues for graphical regular representations.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1373.60A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We say that a finite group G is "DRR-detecting" if, for every subset S of G, either the Cayley digraph Cay(G,S) is a digraphical regular representation (that is, its automorphism group acts regularly on its vertex set) or there is a nontrivial group automorphism phi of G such that phi(S) = S. We show that every nilpotent DRR-detecting group is a p-group, but that the wreath product of two cyclic groups of order p is not DRR-detecting, for every odd prime p. We also show that if G and H are nontrivial groups that admit a digraphical regular representation and either gcd(|G|,|H|) = 1, or H is not DRR-detecting, then the direct product G x H is not DRR-detecting. Some of these results also have analogues for graphical regular representations.