{"title":"Tuning hole transport in a highly dispersed blend of chemically similar polyfluorene copolymers","authors":"M. J. Harding, R. Maher, L. Cohen, A. Campbell","doi":"10.1117/12.681024","DOIUrl":null,"url":null,"abstract":"Here we report results of time-of-flight (ToF) measurements on blends of different ratios of poly(9,9-dioctylfluorene-cobis- N,N'-(4-methoxylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFMO) and the structurally similar poly(9,9- dioctylfluorene-co-N-(4-methoxyphenyl)diphenylamine) (TFMO). It is shown that the hole mobility can be tuned over three orders of magnitude with a mobility minimum at 10% PFMO and 90% TFMO. We also use Raman microscopy to demonstrate that the blends do not phase separate within the one micron resolution of our experiment.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.681024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Here we report results of time-of-flight (ToF) measurements on blends of different ratios of poly(9,9-dioctylfluorene-cobis- N,N'-(4-methoxylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFMO) and the structurally similar poly(9,9- dioctylfluorene-co-N-(4-methoxyphenyl)diphenylamine) (TFMO). It is shown that the hole mobility can be tuned over three orders of magnitude with a mobility minimum at 10% PFMO and 90% TFMO. We also use Raman microscopy to demonstrate that the blends do not phase separate within the one micron resolution of our experiment.