IVUS tissue characterization with sub-class error-correcting output codes

Sergio Escalera, O. Pujol, J. Mauri, P. Radeva
{"title":"IVUS tissue characterization with sub-class error-correcting output codes","authors":"Sergio Escalera, O. Pujol, J. Mauri, P. Radeva","doi":"10.1109/CVPRW.2008.4563021","DOIUrl":null,"url":null,"abstract":"Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on Radio Frequency, texture-based, slope-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different subsets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers and feature sets.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Intravascular ultrasound (IVUS) represents a powerful imaging technique to explore coronary vessels and to study their morphology and histologic properties. In this paper, we characterize different tissues based on Radio Frequency, texture-based, slope-based, and combined features. To deal with the classification of multiple tissues, we require the use of robust multi-class learning techniques. In this context, we propose a strategy to model multi-class classification tasks using sub-classes information in the ECOC framework. The new strategy splits the classes into different subsets according to the applied base classifier. Complex IVUS data sets containing overlapping data are learnt by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. The method automatically characterizes different tissues, showing performance improvements over the state-of-the-art ECOC techniques for different base classifiers and feature sets.
IVUS组织表征与亚类纠错输出代码
血管内超声(IVUS)是一种探测冠状血管并研究其形态学和组织学特性的强大成像技术。在本文中,我们基于射频、基于纹理、基于坡度和组合特征来表征不同的组织。为了处理多组织的分类,我们需要使用鲁棒的多类学习技术。在此背景下,我们提出了一种利用ECOC框架中的子类信息对多类分类任务建模的策略。新策略根据应用的基分类器将类划分为不同的子集。包含重叠数据的复杂IVUS数据集通过将原始类集划分为子类来学习,并将二元问题嵌入到问题依赖的ECOC设计中。该方法自动表征不同的组织,在不同的基本分类器和特征集上显示了比最先进的ECOC技术的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信