Moving Average Threshold Heterogeneous Autoregressive (MAT-HAR) Models

Kaiji Motegi, X. Cai, S. Hamori, Haifeng Xu
{"title":"Moving Average Threshold Heterogeneous Autoregressive (MAT-HAR) Models","authors":"Kaiji Motegi, X. Cai, S. Hamori, Haifeng Xu","doi":"10.2139/ssrn.3426182","DOIUrl":null,"url":null,"abstract":"We propose moving average threshold heterogeneous autoregressive (MAT-HAR) models as a novel combination of heterogeneous autoregression (HAR) and threshold autoregression (TAR). The MAT-HAR has multiple groups of lags of a target series, and a threshold term can appear in each group. The threshold is a moving average of lagged target series, which guarantees time-varying thresholds and simple estimation via least squares. We show via Monte Carlo simulations that the MAT-HAR has sharp in-sample and out-of-sample performance. An empirical application on the industrial production of Japan suggests that significant threshold effects exist, and the MAT-HAR has a higher forecast accuracy than the HAR.","PeriodicalId":155479,"journal":{"name":"Econometric Modeling: Macroeconomics eJournal","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Macroeconomics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3426182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose moving average threshold heterogeneous autoregressive (MAT-HAR) models as a novel combination of heterogeneous autoregression (HAR) and threshold autoregression (TAR). The MAT-HAR has multiple groups of lags of a target series, and a threshold term can appear in each group. The threshold is a moving average of lagged target series, which guarantees time-varying thresholds and simple estimation via least squares. We show via Monte Carlo simulations that the MAT-HAR has sharp in-sample and out-of-sample performance. An empirical application on the industrial production of Japan suggests that significant threshold effects exist, and the MAT-HAR has a higher forecast accuracy than the HAR.
移动平均阈值异构自回归(MAT-HAR)模型
我们提出了移动平均阈值异质自回归(MAT-HAR)模型,作为异质自回归(HAR)和阈值自回归(TAR)的新组合。MAT-HAR具有目标序列的多组滞后,每组中可以出现一个阈值项。阈值是滞后目标序列的移动平均,保证了阈值的时变和最小二乘估计的简单性。我们通过蒙特卡罗模拟表明,MAT-HAR具有出色的样本内和样本外性能。对日本工业生产的实证应用表明,存在显著的阈值效应,MAT-HAR的预测精度高于HAR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信