Text Classification of Illegal Activities on Onion Sites

I. Buldin, N. Ivanov
{"title":"Text Classification of Illegal Activities on Onion Sites","authors":"I. Buldin, N. Ivanov","doi":"10.1109/EIConRus49466.2020.9039341","DOIUrl":null,"url":null,"abstract":"Onion sites work using the Hidden Service Protocol, which helps to keep a double anonymity. A such system allows sites to place malicious and illegal content. An identification and tracking of such resources is an important problem, that’s why the article sets a task of developing a system for accurate thematic classification of textual content blocks of hidden web pages using k nearest neighbors method. The article presents the method of content separation placed on Russian-language onion-sites. The research illustrates the analysis of text categorization results based on collected dataset for the implementation of machine learning.","PeriodicalId":333365,"journal":{"name":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConRus49466.2020.9039341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Onion sites work using the Hidden Service Protocol, which helps to keep a double anonymity. A such system allows sites to place malicious and illegal content. An identification and tracking of such resources is an important problem, that’s why the article sets a task of developing a system for accurate thematic classification of textual content blocks of hidden web pages using k nearest neighbors method. The article presents the method of content separation placed on Russian-language onion-sites. The research illustrates the analysis of text categorization results based on collected dataset for the implementation of machine learning.
洋葱网站上非法活动的文本分类
洋葱网站使用隐藏服务协议工作,这有助于保持双重匿名。这样的系统允许网站放置恶意和非法的内容。对这些资源的识别和跟踪是一个重要的问题,这就是为什么本文设置了一个任务,即开发一个系统,使用k近邻方法对隐藏网页的文本内容块进行准确的主题分类。本文介绍了俄语洋葱网站的内容分离方法。本研究阐述了基于收集的数据集对文本分类结果的分析,以实现机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信