{"title":"Joint Antenna Selection and Transmit Beamforming for Dual-Function Radar-Communication Systems","authors":"Fangzhou Wang, A. L. Swindlehurst, Hongbin Li","doi":"10.1109/RadarConf2351548.2023.10149772","DOIUrl":null,"url":null,"abstract":"Dual-function radar-communication (DFRC) design is a promising approach for solving the challenging spectrum congestion problem. This paper considers joint antenna selection and digital beamforming design for a DFRC system that serves multiple multicast communication groups and, meanwhile, performs sensing. The dual-function transmit design is cast as maximizing the minimum target illumination power in multiple target directions by jointly selecting the antennas and designing the beamformers subject to a lower bound on the signal-to-interference-plus-noise ratio (SINR) for the communication users and an upper bound on the clutter power at each clutter scatterer. The resulting optimization formulation is a mixed integer programming problem that is solved with a penalized sequential convex relaxation scheme along with semidefinite relaxation (SDR). Numerical results verify the effectiveness of the proposed DFRC scheme and the associated algorithm.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-function radar-communication (DFRC) design is a promising approach for solving the challenging spectrum congestion problem. This paper considers joint antenna selection and digital beamforming design for a DFRC system that serves multiple multicast communication groups and, meanwhile, performs sensing. The dual-function transmit design is cast as maximizing the minimum target illumination power in multiple target directions by jointly selecting the antennas and designing the beamformers subject to a lower bound on the signal-to-interference-plus-noise ratio (SINR) for the communication users and an upper bound on the clutter power at each clutter scatterer. The resulting optimization formulation is a mixed integer programming problem that is solved with a penalized sequential convex relaxation scheme along with semidefinite relaxation (SDR). Numerical results verify the effectiveness of the proposed DFRC scheme and the associated algorithm.