An effective feature representation of web log data by leveraging byte pair encoding and TF-IDF

Junlang Zhan, X. Liao, Yukun Bao, Lu Gan, Zhiwen Tan, Mengxue Zhang, Ruan He, Jialiang Lu
{"title":"An effective feature representation of web log data by leveraging byte pair encoding and TF-IDF","authors":"Junlang Zhan, X. Liao, Yukun Bao, Lu Gan, Zhiwen Tan, Mengxue Zhang, Ruan He, Jialiang Lu","doi":"10.1145/3321408.3321568","DOIUrl":null,"url":null,"abstract":"Web log data analysis is important in intrusion detection. Various machine learning techniques have been applied. However, compared to abundant researches on machine learning, ways to extract features from log data are still under research. In this paper, we present an effective feature extraction approach by leveraging Byte Pair Encoding (BPE) and Term Frequency-Inverse Document Frequency (TF-IDF). We have applied this approach on various downstream machine learning algorithms and proved its usefulness.","PeriodicalId":364264,"journal":{"name":"Proceedings of the ACM Turing Celebration Conference - China","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Turing Celebration Conference - China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3321408.3321568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Web log data analysis is important in intrusion detection. Various machine learning techniques have been applied. However, compared to abundant researches on machine learning, ways to extract features from log data are still under research. In this paper, we present an effective feature extraction approach by leveraging Byte Pair Encoding (BPE) and Term Frequency-Inverse Document Frequency (TF-IDF). We have applied this approach on various downstream machine learning algorithms and proved its usefulness.
利用字节对编码和TF-IDF的web日志数据的有效特征表示
Web日志数据分析是入侵检测的重要内容。已经应用了各种机器学习技术。然而,相对于机器学习方面的大量研究,从日志数据中提取特征的方法仍处于研究阶段。在本文中,我们提出了一种有效的特征提取方法,利用字节对编码(BPE)和词频-逆文档频率(TF-IDF)。我们已经将这种方法应用于各种下游机器学习算法,并证明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信