SVM and ANN classification using GLCM and HOG features for COVID-19 and Pneumonia detection from Chest X-rays

Carlos Fernandez–Grandon, I. Soto, David Zabala-Blanco, W. Alavia, Verónica García
{"title":"SVM and ANN classification using GLCM and HOG features for COVID-19 and Pneumonia detection from Chest X-rays","authors":"Carlos Fernandez–Grandon, I. Soto, David Zabala-Blanco, W. Alavia, Verónica García","doi":"10.1109/SACVLC53127.2021.9652248","DOIUrl":null,"url":null,"abstract":"Due to the coronavirus pandemic and the lack of an automatic COVID-19 diagnostic system to relieve congestion in health centers and to support the traceability of this disease, this article exposes the implementation of algorithms for automatic diagnosis of lung diseases such as COVID-19 and Pneumonia from chest X-rays (CXR) through GLCM and HOG features extraction using 6300 patches. Then, selecting the best features and different classifiers such as an Support Vector Machine (SVM) and Artificial Neural Network (ANN) to obtain a system maximum accuracy of 93,73% for SVM.","PeriodicalId":235918,"journal":{"name":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Third South American Colloquium on Visible Light Communications (SACVLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACVLC53127.2021.9652248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Due to the coronavirus pandemic and the lack of an automatic COVID-19 diagnostic system to relieve congestion in health centers and to support the traceability of this disease, this article exposes the implementation of algorithms for automatic diagnosis of lung diseases such as COVID-19 and Pneumonia from chest X-rays (CXR) through GLCM and HOG features extraction using 6300 patches. Then, selecting the best features and different classifiers such as an Support Vector Machine (SVM) and Artificial Neural Network (ANN) to obtain a system maximum accuracy of 93,73% for SVM.
基于GLCM和HOG特征的SVM和ANN分类在胸部x射线中检测COVID-19和肺炎
由于新型冠状病毒大流行,以及缺乏COVID-19自动诊断系统来缓解卫生中心的拥堵,支持疾病的可追溯性,本文通过使用6300个补丁,通过GLCM和HOG特征提取,对COVID-19和肺炎等肺部疾病的胸部x光片(CXR)自动诊断算法的实现。然后,选择最佳特征和不同的分类器,如支持向量机(SVM)和人工神经网络(ANN),得到支持向量机(SVM)的系统最大准确率为93,73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信