Graphs with degree constraints

Élie de Panafieu, Lander Ramos
{"title":"Graphs with degree constraints","authors":"Élie de Panafieu, Lander Ramos","doi":"10.1137/1.9781611974324.4","DOIUrl":null,"url":null,"abstract":"Given a set D of nonnegative integers, we derive the asymptotic number of graphs with a givenvnumber of vertices, edges, and such that the degree of every vertex is in D. This generalizes existing results, such as the enumeration of graphs with a given minimum degree, and establishes new ones, such as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those results are derived using analytic combinatorics.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974324.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Given a set D of nonnegative integers, we derive the asymptotic number of graphs with a givenvnumber of vertices, edges, and such that the degree of every vertex is in D. This generalizes existing results, such as the enumeration of graphs with a given minimum degree, and establishes new ones, such as the enumeration of Euler graphs, i.e. where all vertices have an even degree. Those results are derived using analytic combinatorics.
带度约束的图
给定一个非负整数集D,我们导出了图的渐近数目,这些图具有给定数目的顶点和边,并且每个顶点的度数都在D内。这推广了已有的结果,例如具有给定最小度数的图的枚举,并建立了新的结果,例如所有顶点都具有偶数度数的欧拉图的枚举。这些结果是用解析组合学推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信