Heart disorder detection based on computerized iridology using support vector machine

L. Permatasari, Astri Novianty, T. Purboyo
{"title":"Heart disorder detection based on computerized iridology using support vector machine","authors":"L. Permatasari, Astri Novianty, T. Purboyo","doi":"10.1109/ICCEREC.2016.7814983","DOIUrl":null,"url":null,"abstract":"Human iris can be used for detecting organ disorders based on iridology science. Nowadays, iridology diagnosis can be done automatically by computer using artificial intelligence approach. This research focused on cardiac diagnosis based on left iris map on clockwise direction around 2:00 to 3:00. The Principal Component Analysis (PCA) is used for feature extraction while the Support Vector Machine (SVM) for classification. Experimental results showed that the highest accuracy of classification is 80% for the classification.","PeriodicalId":431878,"journal":{"name":"2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2016.7814983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Human iris can be used for detecting organ disorders based on iridology science. Nowadays, iridology diagnosis can be done automatically by computer using artificial intelligence approach. This research focused on cardiac diagnosis based on left iris map on clockwise direction around 2:00 to 3:00. The Principal Component Analysis (PCA) is used for feature extraction while the Support Vector Machine (SVM) for classification. Experimental results showed that the highest accuracy of classification is 80% for the classification.
基于支持向量机的计算机虹膜学心脏疾病检测
基于虹膜学,人体虹膜可用于器官疾病的检测。目前,虹膜学诊断已经可以通过人工智能方法由计算机自动完成。本次研究的重点是在2 ~ 3点左右,以顺时针方向的左虹膜图为基础进行心脏诊断。主成分分析(PCA)用于特征提取,支持向量机(SVM)用于分类。实验结果表明,该分类方法的分类准确率最高可达80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信