Harald Gietler, Christoph Böhm, Stefan Ainetter, Christian Schöffmann, F. Fraundorfer, S. Weiss, H. Zangl
{"title":"Forestry Crane Automation using Learning-based Visual Grasping Point Prediction","authors":"Harald Gietler, Christoph Böhm, Stefan Ainetter, Christian Schöffmann, F. Fraundorfer, S. Weiss, H. Zangl","doi":"10.1109/SAS54819.2022.9881370","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to automate the log-grasping of a forestry crane. A common hydraulic actuated log-crane is converted into a robotic device by retrofitting it with various sensors yielding perception of internal and environmental states. The approach uses a learning-based visual grasp detection. Once a suitable grasping candidate is determined, the crane starts its kinematic controlled operation. The system’s design process is based on a real-sim-real transfer to avoid possibly harmful, to humans and itself, crane behavior. Firstly, the grasping position prediction network is trained with real-world images. Secondly, an accurate simulation model of the crane, including photo-realistic synthetic images, is established. Note that in simulation, the prediction network trained on real-world data can be used without re-training. The simulation is used to design and verify the crane’s control- and the path planning scheme. In this stage, potentially dangerous maneuvers or insufficient quality of sensory information become visible. Thirdly, the elaborated closed-loop system configuration is transferred to the real-world forestry crane. The pick and place capabilities are verified in simulation as well as experimentally. A comparison shows that simulation and real-world scenarios perform equally well, validating the proposed real-sim-real design procedure.1","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an approach to automate the log-grasping of a forestry crane. A common hydraulic actuated log-crane is converted into a robotic device by retrofitting it with various sensors yielding perception of internal and environmental states. The approach uses a learning-based visual grasp detection. Once a suitable grasping candidate is determined, the crane starts its kinematic controlled operation. The system’s design process is based on a real-sim-real transfer to avoid possibly harmful, to humans and itself, crane behavior. Firstly, the grasping position prediction network is trained with real-world images. Secondly, an accurate simulation model of the crane, including photo-realistic synthetic images, is established. Note that in simulation, the prediction network trained on real-world data can be used without re-training. The simulation is used to design and verify the crane’s control- and the path planning scheme. In this stage, potentially dangerous maneuvers or insufficient quality of sensory information become visible. Thirdly, the elaborated closed-loop system configuration is transferred to the real-world forestry crane. The pick and place capabilities are verified in simulation as well as experimentally. A comparison shows that simulation and real-world scenarios perform equally well, validating the proposed real-sim-real design procedure.1