Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations

Abdullah Abdulhaque¹, Trond Kvamsdal, Mukesh Kumar, A. Kvarving
{"title":"Adaptive mixed isogeometric analysis of a highly convective benchmark problem for the Boussinesq equations","authors":"Abdullah Abdulhaque¹, Trond Kvamsdal, Mukesh Kumar, A. Kvarving","doi":"10.23967/admos.2023.045","DOIUrl":null,"url":null,"abstract":"In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10 1 -10 5 , by comparing with high-resolution reference solution.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study a special benchmark problem for the Boussinesq equations. This is the Navier-Stokes equations coupled with the Advection-Diffusion equation, and it is used for modelling buoyancy-driven flow. The solution process is mixed isogeometric discretization combined with adaptive mesh refinement [4]. We discretize the equation system with the recently proposed isogeometric versions of the Taylor-Hood, Sub-Grid and Raviart-Thomas elements [1]. The adaptive refinement is based on LR B-splines [2] and recovery estimators [3]. We investigate the suitability of our adaptive methods for Rayleigh numbers in the range 10 1 -10 5 , by comparing with high-resolution reference solution.
高对流Boussinesq方程基准问题的自适应混合等几何分析
本文研究了一类特殊的Boussinesq方程的基准问题。这是Navier-Stokes方程与平流-扩散方程的耦合,它用于模拟浮力驱动的流动。求解过程采用混合等几何离散化与自适应网格细化相结合的方法[4]。我们用最近提出的Taylor-Hood、Sub-Grid和Raviart-Thomas单元的等几何版本对方程组进行离散化[1]。自适应细化是基于LR b样条[2]和恢复估计[3]。通过与高分辨率参考溶液的比较,我们研究了我们的自适应方法在10 1 -10 5范围内的瑞利数的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信