{"title":"Decision Modeling and Simulation of Fighter Air-to-ground Combat Based on Reinforcement Learning","authors":"Yifei Wu, Yonglin Lei, Zhi Zhu, Yan Wang","doi":"10.1145/3529446.3529463","DOIUrl":null,"url":null,"abstract":"With the Artificial Intelligence (AI) widely used in air combat simulation system, the decision-making system of fighter has reached a high level of complexity. Traditionally, the pure theoretical analysis and the rule-based system are not enough to represent the cognitive behavior of pilots. In order to properly specify the autonomous decision-making of fighter, hence, we proposed a unified framework which combines the combat simulation and machine learning in this paper. This framework adopts deep reinforcement learning modelling by using the supervised learning and the Deep Q-Network (DQN) methods. As a proof of concept, we built an autonomous decision-making training scenario based on the Weapon Effectiveness Simulation System (WESS). The simulation results show that the intelligent decision-making model based on the proposed framework has better combat effects than the traditional decision-making model based on knowledge engineering.","PeriodicalId":151062,"journal":{"name":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529446.3529463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the Artificial Intelligence (AI) widely used in air combat simulation system, the decision-making system of fighter has reached a high level of complexity. Traditionally, the pure theoretical analysis and the rule-based system are not enough to represent the cognitive behavior of pilots. In order to properly specify the autonomous decision-making of fighter, hence, we proposed a unified framework which combines the combat simulation and machine learning in this paper. This framework adopts deep reinforcement learning modelling by using the supervised learning and the Deep Q-Network (DQN) methods. As a proof of concept, we built an autonomous decision-making training scenario based on the Weapon Effectiveness Simulation System (WESS). The simulation results show that the intelligent decision-making model based on the proposed framework has better combat effects than the traditional decision-making model based on knowledge engineering.