Robust Bayesian detection: A case study

P. D. Oude, G. Pavlin, J. D. Groot
{"title":"Robust Bayesian detection: A case study","authors":"P. D. Oude, G. Pavlin, J. D. Groot","doi":"10.1109/ICIF.2010.5711944","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of Bayesian networks in a class of contemporary gas detection/classification problems. In particular, we expose the properties of Bayesian networks which allow creation of detection systems with good performance despite significant deviations between the used models and the underlying true probability distributions. Key to adequate grounding of fusion processes is explicit representation of the locality of causal relations in models of monitoring processes. This provides guidance for a systematic and tractable construction of complex detection systems correlating very heterogeneous information. The resulting Bayesian detection systems are experimentally validated.","PeriodicalId":341446,"journal":{"name":"2010 13th International Conference on Information Fusion","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2010.5711944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper discusses the use of Bayesian networks in a class of contemporary gas detection/classification problems. In particular, we expose the properties of Bayesian networks which allow creation of detection systems with good performance despite significant deviations between the used models and the underlying true probability distributions. Key to adequate grounding of fusion processes is explicit representation of the locality of causal relations in models of monitoring processes. This provides guidance for a systematic and tractable construction of complex detection systems correlating very heterogeneous information. The resulting Bayesian detection systems are experimentally validated.
鲁棒贝叶斯检测:一个案例研究
本文讨论了贝叶斯网络在一类当代气体检测/分类问题中的应用。特别是,我们揭示了贝叶斯网络的特性,它允许创建具有良好性能的检测系统,尽管所使用的模型与潜在的真实概率分布之间存在显着偏差。融合过程充分接地的关键是在监测过程模型中明确表示因果关系的局部性。这为系统和易于处理的复杂检测系统的构建提供了指导,这些检测系统涉及非常异构的信息。实验验证了所得到的贝叶斯检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信