Recognition of occluded targets using stochastic models

B. Bhanu, Yingqiang Lin
{"title":"Recognition of occluded targets using stochastic models","authors":"B. Bhanu, Yingqiang Lin","doi":"10.1109/CVBVS.2000.855252","DOIUrl":null,"url":null,"abstract":"Recognition of occluded objects in synthetic aperture radar (SAR) images is a significant problem for automatic target recognition. In this paper, we present a hidden Markov modeling (HMM) based approach for recognizing objects in synthetic aperture radar (SAR) images. We identify the peculiar characteristics of SAR sensors and using these characteristics we develop feature based multiple models for a given SAR image of an object. The models exploiting the relative geometry of feature locations or the amplitude of SAR radar return are based on sequentialization of scattering centers extracted from SAR images. In order to improve performance we integrate these models synergistically using their probabalistic estimates for recognition of a particular target at a specific azimuth. Experimental results are presented using both synthetic and real SAR images.","PeriodicalId":231063,"journal":{"name":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (Cat. No.PR00640)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVBVS.2000.855252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recognition of occluded objects in synthetic aperture radar (SAR) images is a significant problem for automatic target recognition. In this paper, we present a hidden Markov modeling (HMM) based approach for recognizing objects in synthetic aperture radar (SAR) images. We identify the peculiar characteristics of SAR sensors and using these characteristics we develop feature based multiple models for a given SAR image of an object. The models exploiting the relative geometry of feature locations or the amplitude of SAR radar return are based on sequentialization of scattering centers extracted from SAR images. In order to improve performance we integrate these models synergistically using their probabalistic estimates for recognition of a particular target at a specific azimuth. Experimental results are presented using both synthetic and real SAR images.
基于随机模型的遮挡目标识别
合成孔径雷达(SAR)图像中遮挡物的识别是目标自动识别的一个重要问题。提出了一种基于隐马尔可夫模型(HMM)的合成孔径雷达(SAR)图像目标识别方法。我们确定了SAR传感器的特殊特征,并利用这些特征为给定物体的SAR图像开发基于特征的多个模型。利用特征位置的相对几何形状或SAR雷达回波幅度的模型是基于从SAR图像中提取的散射中心的序列化。为了提高性能,我们使用它们的概率估计来协同集成这些模型,以识别特定方位角的特定目标。给出了合成SAR图像和真实SAR图像的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信