Rob A. Rutenbar, M. Baron, Thomas Daniel, R. Jayaraman, Z. Or-Bach, Jonathan Rose, C. Sechen
{"title":"(When) will FPGAs kill ASICs? (panel session)","authors":"Rob A. Rutenbar, M. Baron, Thomas Daniel, R. Jayaraman, Z. Or-Bach, Jonathan Rose, C. Sechen","doi":"10.1145/378239.378499","DOIUrl":null,"url":null,"abstract":"There was a time - in the dim historical past - when foundries actually made ASICs with only 5000 to 50,000 logic gates. But FPGAs and CPLDs conquered those markets and pushed ASIC silicon toward opportunities with more logic, volume, and speed. Today's largest FPGAs approach the few-million-gate size of a typical ASIC design, and continue to sprout embedded cores, such as CPUs, memories, and interfaces. And given the risks of nonworking nanometer silicon, FPGA costs and time-to-market are looking awfully attractive. So, will FPGAs kill ASICs? ASIC technologists certainly think not. ASICs are themselves sprouting patches of programmable FPGA fabric, and pushing new realms of size and especially speed. New tools claim to have tamed the convergence problems of older ASIC flows. Is the future to be found in a market full of FPGAs with ASIC-like cores? ASICs with FPGA cores? Other exotic hybrids? Our panelists will share their disagreements on these prognostications.","PeriodicalId":340045,"journal":{"name":"Proceedings of the 38th conference on Design automation - DAC '01","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th conference on Design automation - DAC '01","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.378499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There was a time - in the dim historical past - when foundries actually made ASICs with only 5000 to 50,000 logic gates. But FPGAs and CPLDs conquered those markets and pushed ASIC silicon toward opportunities with more logic, volume, and speed. Today's largest FPGAs approach the few-million-gate size of a typical ASIC design, and continue to sprout embedded cores, such as CPUs, memories, and interfaces. And given the risks of nonworking nanometer silicon, FPGA costs and time-to-market are looking awfully attractive. So, will FPGAs kill ASICs? ASIC technologists certainly think not. ASICs are themselves sprouting patches of programmable FPGA fabric, and pushing new realms of size and especially speed. New tools claim to have tamed the convergence problems of older ASIC flows. Is the future to be found in a market full of FPGAs with ASIC-like cores? ASICs with FPGA cores? Other exotic hybrids? Our panelists will share their disagreements on these prognostications.