Performance analysis of a persymmetric adaptive matched filter

Jun Liu, Hongbin Li, B. Himed
{"title":"Performance analysis of a persymmetric adaptive matched filter","authors":"Jun Liu, Hongbin Li, B. Himed","doi":"10.1109/SAM.2016.7569617","DOIUrl":null,"url":null,"abstract":"We examine the adaptive detection problem in the presence of colored noise with an unknown covariance matrix, by exploiting a persymmetric structure in the received signal. The persymmetric adaptive matched filter (PS-AMF) is used to address this problem, which can significantly alleviate the requirement of secondary data. In this paper, finite-sum expressions for the probability of false alarm of the PS-AMF are derived, which are more convenient to use in calculating the detection threshold. Moreover, the detection probabilities of the PS-AMF are derived. These theoretical results are all confirmed using Monte Carlo simulations.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the adaptive detection problem in the presence of colored noise with an unknown covariance matrix, by exploiting a persymmetric structure in the received signal. The persymmetric adaptive matched filter (PS-AMF) is used to address this problem, which can significantly alleviate the requirement of secondary data. In this paper, finite-sum expressions for the probability of false alarm of the PS-AMF are derived, which are more convenient to use in calculating the detection threshold. Moreover, the detection probabilities of the PS-AMF are derived. These theoretical results are all confirmed using Monte Carlo simulations.
一种超对称自适应匹配滤波器性能分析
我们通过利用接收信号中的超对称结构,研究了存在未知协方差矩阵的彩色噪声的自适应检测问题。采用超对称自适应匹配滤波器(PS-AMF)解决了这一问题,大大减轻了对辅助数据的要求。本文导出了PS-AMF虚警概率的有限和表达式,便于检测阈值的计算。此外,还推导了PS-AMF的检测概率。这些理论结果都通过蒙特卡罗模拟得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信