{"title":"Stability of the equilibrium positions of an engine with nonlinear quadratic springs","authors":"N. Stanescu, D. Popa","doi":"10.2478/s13531-013-0138-1","DOIUrl":null,"url":null,"abstract":"Our paper realizes a study of the equilibrium positions for an engine supported by four identical nonlinear springs of quadratic characteristic. The systems with quadratic characteristic are generally avoided because they lead to mathematical complications. Our goal is to realize such a study for an engine supported on quadratic springs. For the model purposed, we established the equations of motion and we discussed the possibilities for the equilibrium positions. Because of the quadratic characteristic of the springs and of the approximations made for the small rotations, the equations obtained for the equilibrium lead us to a paradox, which consists in the existence of an open neighborhood in which there exists an infinity of positions of indifferent equilibrium, or a curve where the equilibrium positions are situated. Moreover, the study of the stability shows that the stability is assured for the position at which the springs are not compressed. Finally, a numerical example is presented and completely solved.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0138-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Our paper realizes a study of the equilibrium positions for an engine supported by four identical nonlinear springs of quadratic characteristic. The systems with quadratic characteristic are generally avoided because they lead to mathematical complications. Our goal is to realize such a study for an engine supported on quadratic springs. For the model purposed, we established the equations of motion and we discussed the possibilities for the equilibrium positions. Because of the quadratic characteristic of the springs and of the approximations made for the small rotations, the equations obtained for the equilibrium lead us to a paradox, which consists in the existence of an open neighborhood in which there exists an infinity of positions of indifferent equilibrium, or a curve where the equilibrium positions are situated. Moreover, the study of the stability shows that the stability is assured for the position at which the springs are not compressed. Finally, a numerical example is presented and completely solved.