Benchmarking cloud-based tagging services

T. Malik, K. Chard, Ian T Foster
{"title":"Benchmarking cloud-based tagging services","authors":"T. Malik, K. Chard, Ian T Foster","doi":"10.1109/ICDEW.2014.6818331","DOIUrl":null,"url":null,"abstract":"Tagging services have emerged as a useful and popular way to organize data resources. Despite popular interest, an efficient implementation of tagging services is a challenge since highly dynamic schemas and sparse, heterogeneous attributes must be supported within a shared, openly writable database. NoSQL databases support dynamic schemas and sparse data but lack efficient native support for joins that are inherent to query and search functionality in tagging services. Relational databases provide sufficient support for joins, but offer a multitude of options to manifest dynamic schemas and tune sparse data models, making evaluation of a tagging service time consuming and painful. In this case-study paper, we describe a benchmark for tagging services, and propose benchmarking modules that can be used to evaluate the suitability of a database for workloads generated from tagging services. We have incorporated our modules as part of OLTP-Bench, a cloud-based benchmarking infrastructure, to understand performance characteristics of tagging systems on several relational DBMSs and cloud-based database-as-a-service (DBaaS) offerings.","PeriodicalId":302600,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering Workshops","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2014.6818331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Tagging services have emerged as a useful and popular way to organize data resources. Despite popular interest, an efficient implementation of tagging services is a challenge since highly dynamic schemas and sparse, heterogeneous attributes must be supported within a shared, openly writable database. NoSQL databases support dynamic schemas and sparse data but lack efficient native support for joins that are inherent to query and search functionality in tagging services. Relational databases provide sufficient support for joins, but offer a multitude of options to manifest dynamic schemas and tune sparse data models, making evaluation of a tagging service time consuming and painful. In this case-study paper, we describe a benchmark for tagging services, and propose benchmarking modules that can be used to evaluate the suitability of a database for workloads generated from tagging services. We have incorporated our modules as part of OLTP-Bench, a cloud-based benchmarking infrastructure, to understand performance characteristics of tagging systems on several relational DBMSs and cloud-based database-as-a-service (DBaaS) offerings.
对基于云的标记服务进行基准测试
标记服务已经成为一种有用且流行的组织数据资源的方式。尽管大家都很感兴趣,但标记服务的有效实现仍然是一个挑战,因为必须在共享的、开放可写的数据库中支持高度动态的模式和稀疏的异构属性。NoSQL数据库支持动态模式和稀疏数据,但缺乏对标签服务中查询和搜索功能固有的连接的有效本地支持。关系数据库为连接提供了足够的支持,但是提供了大量的选项来显示动态模式和调优稀疏数据模型,这使得对标记服务的评估既耗时又痛苦。在这篇案例研究论文中,我们描述了标记服务的基准测试,并提出了可用于评估数据库对标记服务生成的工作负载的适用性的基准测试模块。我们已经将我们的模块合并为OLTP-Bench(一种基于云的基准测试基础设施)的一部分,以了解在几个关系dbms和基于云的数据库即服务(DBaaS)产品上标记系统的性能特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信