Genetic algorithm-based neural error correcting output classifier

Mahdi Amina, F. Masulli, S. Rovetta
{"title":"Genetic algorithm-based neural error correcting output classifier","authors":"Mahdi Amina, F. Masulli, S. Rovetta","doi":"10.1109/CIEL.2014.7015745","DOIUrl":null,"url":null,"abstract":"The present study elaborates a probabilistic framework of ECOC technique, via replacement of predesigned ECOC matrix by sufficiently large random codes. Further mathematical grounds of deploying random codes through probability formulations are part of novelty of this study. Random variants of ECOC techniques were applied in previous literatures, however, often failing to deliver sufficient theoretical proof of efficiency of random coding matrix. In this paper a Genetic Algorithm-based neural encoder with redefined operators is designed and trained. A variant of heuristic trimming of ECOC codewords is also deployed to acquire more satisfactory results. The efficacy of proposed approach was validated over a wide set of datasets of UCI Machine Learning Repository and compared against two conventional methods.","PeriodicalId":229765,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEL.2014.7015745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present study elaborates a probabilistic framework of ECOC technique, via replacement of predesigned ECOC matrix by sufficiently large random codes. Further mathematical grounds of deploying random codes through probability formulations are part of novelty of this study. Random variants of ECOC techniques were applied in previous literatures, however, often failing to deliver sufficient theoretical proof of efficiency of random coding matrix. In this paper a Genetic Algorithm-based neural encoder with redefined operators is designed and trained. A variant of heuristic trimming of ECOC codewords is also deployed to acquire more satisfactory results. The efficacy of proposed approach was validated over a wide set of datasets of UCI Machine Learning Repository and compared against two conventional methods.
基于遗传算法的神经纠错输出分类器
本研究通过用足够大的随机码代替预先设计的ECOC矩阵,阐述了ECOC技术的概率框架。通过概率公式部署随机码的进一步数学基础是本研究的新颖之处。在以往的文献中,ECOC技术的随机变体得到了应用,但往往不能提供足够的理论证明随机编码矩阵的有效性。本文设计并训练了一种基于遗传算法的重定义算子神经编码器。为了获得更满意的结果,还采用了一种启发式的ECOC码字修剪方法。在UCI机器学习库的大量数据集上验证了该方法的有效性,并与两种传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信