25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM
Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee
{"title":"25.2 A 16Gb Sub-1V 7.14Gb/s/pin LPDDR5 SDRAM Applying a Mosaic Architecture with a Short-Feedback 1-Tap DFE, an FSS Bus with Low-Level Swing and an Adaptively Controlled Body Biasing in a 3rd-Generation 10nm DRAM","authors":"Yong-Hun Kim, Hyung-Jin Kim, Jaemin Choi, M. Ahn, Dongkeon Lee, Seunghyun Cho, Dong-Yeon Park, Y.J. Park, Min-Soo Jang, Yongjun Kim, Jinyong Choi, Sung-Woo Yoon, Jaesu Jung, Jae-Koo Park, Jae-Woo Lee, D. Kwon, H. Cha, Si-Hyeong Cho, Seonghwan Kim, Jihwa You, Kyoung-Ho Kim, Dae-Hyun Kim, Byung-Cheol Kim, Young-Kwan Kim, Jun-Ho Kim, Seouk-Kyu Choi, Chankyung Kim, Byongwook Na, Hye-In Choi, Reum Oh, Jeong-Don Ihm, Seung-Jun Bae, N. Kim, Jung-Bae Lee","doi":"10.1109/ISSCC42613.2021.9366050","DOIUrl":null,"url":null,"abstract":"The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9366050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The demand for mobile DRAM has increased, with a requirement for high density, high data rates, and low-power consumption to support applications such as 5G communication, multiple cameras, and automotive. Thus, density has increased from 2Gb [1] to 16Gb [2] in LPDDR4 and LPDDR4X, but the maximum density for LPDDR5 is only 12Gb [3] due to the limited package size specification: such as a 496-ball FBGA. In this work, a mosaic architecture is introduced to increase the density to 16Gb, even in a limited package size. Additionally, the I/O performance is improved by shortening the length for the top metal, and a short-feedback sense amplifier (SA) with dedicated VREFs for a 1-tap DFE. The side effect of a mosaic architecture is the performance of the internal DRAM due to a 1.64× long bus line; however, this is mitigated by a fully-source-synchronous (FSS) bus scheme that is robust to PVT variation. In addition, to reduce the power consumption of the long bus line a low-level swing (LLS) scheme is used in low frequency mode. Furthermore, to enhance power efficiency and yield an adaptive-body-bias (ABB) scheme is introduced in a 3rd generation of a 10nm DRAM process.