Color and shape based traffic sign detection

Emre Ulay, G. Akar, M. M. Bulut
{"title":"Color and shape based traffic sign detection","authors":"Emre Ulay, G. Akar, M. M. Bulut","doi":"10.1109/SIU.2009.5136365","DOIUrl":null,"url":null,"abstract":"This paper proposes two different methods in order to improve the performance of traffic sign detection process. These methods are used for efficient and robust detection of red or blue colored, circular, octagonal, rectangular and triangular traffic signs. Proposed methods use both color and shape features of the traffic signs. Both of the methods gather the color and edge information of the image in order to form a search domain for the shape based detection algorithm. The main difference between the methods appears in the fusion process of color and shape features of the gathered images. Although methods employ different algorithms for color segmentation, they both use HSV color domain. Tests on static images show improvement especially on false positive and detection rate.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes two different methods in order to improve the performance of traffic sign detection process. These methods are used for efficient and robust detection of red or blue colored, circular, octagonal, rectangular and triangular traffic signs. Proposed methods use both color and shape features of the traffic signs. Both of the methods gather the color and edge information of the image in order to form a search domain for the shape based detection algorithm. The main difference between the methods appears in the fusion process of color and shape features of the gathered images. Although methods employ different algorithms for color segmentation, they both use HSV color domain. Tests on static images show improvement especially on false positive and detection rate.
基于颜色和形状的交通标志检测
为了提高交通标志检测过程的性能,本文提出了两种不同的方法。这些方法用于有效和稳健的检测红色或蓝色,圆形,八角形,矩形和三角形的交通标志。所提出的方法同时利用交通标志的颜色和形状特征。这两种方法都收集图像的颜色和边缘信息,为基于形状的检测算法形成一个搜索域。两种方法的主要区别在于所采集图像的颜色和形状特征的融合过程。虽然方法采用不同的算法进行颜色分割,但它们都使用HSV颜色域。对静态图像的测试结果表明,在误报和检出率方面有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信