A Comparative study on Term Weighting Methods for Automated Telugu Text Categorization with Effective Classifiers

Vishnu Murthy G, Vishnu Vardhan B, Sarangam K, V. P
{"title":"A Comparative study on Term Weighting Methods for Automated Telugu Text Categorization with Effective Classifiers","authors":"Vishnu Murthy G, Vishnu Vardhan B, Sarangam K, V. P","doi":"10.5121/IJDKP.2013.3606","DOIUrl":null,"url":null,"abstract":"Automatic Text categorization refers to the process of assigning a category or some categories automatically among predefined ones. Text categorization is challenging in Indian languages has rich in morphology, a large number of word forms and large feature spaces. This paper investigates the performance of different classification approaches using different term weighting approaches in order to decide the most applicable one to Telugu text classification problem. We have investigated on different term weighting methods for Telugu corpus in combination with Naive Bayes ( NB), Support Vector Machine (SVM) and k Nearest Neighbor (kNN) classifiers.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2013.3606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Automatic Text categorization refers to the process of assigning a category or some categories automatically among predefined ones. Text categorization is challenging in Indian languages has rich in morphology, a large number of word forms and large feature spaces. This paper investigates the performance of different classification approaches using different term weighting approaches in order to decide the most applicable one to Telugu text classification problem. We have investigated on different term weighting methods for Telugu corpus in combination with Naive Bayes ( NB), Support Vector Machine (SVM) and k Nearest Neighbor (kNN) classifiers.
基于有效分类器的泰卢固语文本自动分类词加权方法比较研究
文本自动分类是指在预定义的类别中自动分配一个或一些类别的过程。印度语言具有丰富的词法、大量的词形和大的特征空间,文本分类具有挑战性。为了确定最适用于泰卢固语文本分类问题的分类方法,本文采用不同的词加权方法对不同分类方法的性能进行了研究。我们结合朴素贝叶斯(NB)、支持向量机(SVM)和k近邻(kNN)分类器研究了泰卢固语语料库的不同术语加权方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信