{"title":"Subspace identification of an aircraft linear parameter-varying flutter model","authors":"M. Buchholz, W. Larimore","doi":"10.1109/ACC.2013.6580170","DOIUrl":null,"url":null,"abstract":"The process of system identification of an linear parameter-varying (LPV) system using subspace techniques is demonstrated by application to the widely used pitch-plunge model of an aircraft flutter simulation. The identification is done using a recently published subspace identification (SID) algorithm [1] for LPV systems. The objective is to demonstrate the ability of this method to not only identify a highly accurate model in state space form, but to also determine the state order of the system. As the identification data are gained from simulation, a comparison is given between the noiseless and the noisy case, and the effects of noise especially on the model order estimation are discussed.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The process of system identification of an linear parameter-varying (LPV) system using subspace techniques is demonstrated by application to the widely used pitch-plunge model of an aircraft flutter simulation. The identification is done using a recently published subspace identification (SID) algorithm [1] for LPV systems. The objective is to demonstrate the ability of this method to not only identify a highly accurate model in state space form, but to also determine the state order of the system. As the identification data are gained from simulation, a comparison is given between the noiseless and the noisy case, and the effects of noise especially on the model order estimation are discussed.