Devangi Vilas Chinchankarame, Noha M. Elfiky, Nada Attar
{"title":"Visual Task Classification using Classic Machine Learning and CNNs","authors":"Devangi Vilas Chinchankarame, Noha M. Elfiky, Nada Attar","doi":"10.11159/mhci22.110","DOIUrl":null,"url":null,"abstract":"- Our eyes actively perform tasks including, but not limited to, searching, comparing, and counting. This includes tasks in front of a computer, whether it be trivial activities like reading email, or video gaming, or more serious activities like drone management, or flight simulation. Understanding what type of visual task is being performed is important to develop intelligent user interfaces. In this work, we investigated standard machine and deep learning methods to identify the task type using eye-tracking data - including both raw numerical data and the visual representations of the user gaze scan paths and pupil size. To this end, we experimented with computer vision algorithms such as Convolutional Neural Networks (CNNs) and compared the results to classic machine learning algorithms. We found that Machine learning-based methods performed with high accuracy classifying tasks that involve minimal visual search, while CNNs techniques do better in situations where visual search task is included.","PeriodicalId":294100,"journal":{"name":"World Congress on Electrical Engineering and Computer Systems and Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Congress on Electrical Engineering and Computer Systems and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/mhci22.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
- Our eyes actively perform tasks including, but not limited to, searching, comparing, and counting. This includes tasks in front of a computer, whether it be trivial activities like reading email, or video gaming, or more serious activities like drone management, or flight simulation. Understanding what type of visual task is being performed is important to develop intelligent user interfaces. In this work, we investigated standard machine and deep learning methods to identify the task type using eye-tracking data - including both raw numerical data and the visual representations of the user gaze scan paths and pupil size. To this end, we experimented with computer vision algorithms such as Convolutional Neural Networks (CNNs) and compared the results to classic machine learning algorithms. We found that Machine learning-based methods performed with high accuracy classifying tasks that involve minimal visual search, while CNNs techniques do better in situations where visual search task is included.