{"title":"Artificial Intelligence in Technology-Enhanced Assessment: A Survey of Machine Learning","authors":"Sima Caspari-Sadeghi","doi":"10.1177/00472395221138791","DOIUrl":null,"url":null,"abstract":"Intelligent assessment, the core of any AI-based educational technology, is defined as embedded, stealth and ubiquitous assessment which uses intelligent techniques to diagnose the current cognitive level, monitor dynamic progress, predict success and update students’ profiling continuously. It also uses various technologies, such as learning analytics, educational data mining, intelligent sensors, wearables and machine learning. This can be the key to Precision Education (PE): adaptive, tailored, individualized instruction and learning. This paper explores (a) the applications of Machine Learning (ML) in intelligent assessment, and (b) the use of deep learning models in ‘knowledge tracing and student modeling’. The paper concludes by discussing barriers involved in using state-of-the-art ML methods and some suggestions to unleash the power of data and ML to improve educational decision-making.","PeriodicalId":300288,"journal":{"name":"Journal of Educational Technology Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Technology Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00472395221138791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent assessment, the core of any AI-based educational technology, is defined as embedded, stealth and ubiquitous assessment which uses intelligent techniques to diagnose the current cognitive level, monitor dynamic progress, predict success and update students’ profiling continuously. It also uses various technologies, such as learning analytics, educational data mining, intelligent sensors, wearables and machine learning. This can be the key to Precision Education (PE): adaptive, tailored, individualized instruction and learning. This paper explores (a) the applications of Machine Learning (ML) in intelligent assessment, and (b) the use of deep learning models in ‘knowledge tracing and student modeling’. The paper concludes by discussing barriers involved in using state-of-the-art ML methods and some suggestions to unleash the power of data and ML to improve educational decision-making.