U-Net Transfer Learning for Image Restoration on Sparse CT Reconstruction in Pre-Clinical Research

Huanyi Zhou, Honggang Zhao, Wenlu Wang
{"title":"U-Net Transfer Learning for Image Restoration on Sparse CT Reconstruction in Pre-Clinical Research","authors":"Huanyi Zhou, Honggang Zhao, Wenlu Wang","doi":"10.1109/ICDMW58026.2022.00053","DOIUrl":null,"url":null,"abstract":"Sparse computed tomography (CT) reconstruction can lead to significant streak artifacts. Image restoration that removes these artifacts while recovering image features is an important area of research in low-dose sparse CT imaging. In pre-clinical research, where a lag still exists in the use of professional CT equipment, existing imaging devices provide limited X-ray dose energy accompanied by strong noise patterns when scanning. Reconstructed CT images contain significant noise and artifacts. We propose a deep transfer learning (DTL) neural network training method that exploits open-source data for initial training and a small-scale detected phantom image with its total variation result for transfer learning to address this issue. We hypothesize that a pre-trained neural network from open-source data has no prior knowledge of our device configuration, which prevents its application on our measured data, and deep transfer learning on small-scale detected phantom can feed specific configurations into the model. Our experiment has demonstrated that our proposed method, incorporating a modified total variation (TV) algorithm, can successfully realize a good balance between artifact removal and image feature restoration.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse computed tomography (CT) reconstruction can lead to significant streak artifacts. Image restoration that removes these artifacts while recovering image features is an important area of research in low-dose sparse CT imaging. In pre-clinical research, where a lag still exists in the use of professional CT equipment, existing imaging devices provide limited X-ray dose energy accompanied by strong noise patterns when scanning. Reconstructed CT images contain significant noise and artifacts. We propose a deep transfer learning (DTL) neural network training method that exploits open-source data for initial training and a small-scale detected phantom image with its total variation result for transfer learning to address this issue. We hypothesize that a pre-trained neural network from open-source data has no prior knowledge of our device configuration, which prevents its application on our measured data, and deep transfer learning on small-scale detected phantom can feed specific configurations into the model. Our experiment has demonstrated that our proposed method, incorporating a modified total variation (TV) algorithm, can successfully realize a good balance between artifact removal and image feature restoration.
基于U-Net迁移学习的稀疏CT重建图像恢复临床前研究
稀疏计算机断层扫描(CT)重建会导致显著的条纹伪影。在恢复图像特征的同时去除这些伪影的图像恢复是低剂量稀疏CT成像的一个重要研究领域。在临床前研究中,专业CT设备的使用仍然存在滞后,现有的成像设备在扫描时提供有限的x射线剂量能量并伴有较强的噪声模式。重建的CT图像含有明显的噪声和伪影。为了解决这一问题,我们提出了一种深度迁移学习(DTL)神经网络训练方法,该方法利用开源数据进行初始训练,并利用小尺度检测的幻影图像及其总变分结果进行迁移学习。我们假设,来自开源数据的预训练神经网络对我们的设备配置没有先验知识,这阻碍了它在我们的测量数据上的应用,而在小规模检测到的幻影上的深度迁移学习可以将特定配置输入模型。我们的实验表明,我们提出的方法,结合改进的全变分(TV)算法,可以成功地实现伪影去除和图像特征恢复之间的良好平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信