Platform for Evaluation of Readers' Implicit Feedback using Eye-Tracking

Miroslav Zivkovic, E. V. D. Broek, F. V. D. Sluis
{"title":"Platform for Evaluation of Readers' Implicit Feedback using Eye-Tracking","authors":"Miroslav Zivkovic, E. V. D. Broek, F. V. D. Sluis","doi":"10.1145/3232078.3232099","DOIUrl":null,"url":null,"abstract":"Large amounts of information are nowadays easily obtainable using the Internet, and using implicit feedback whether a reader finds a text interesting is desirable. Eye-tracking technology could be used for such a feedback, and a combination of eye-movement features and a textual complexity measure can be used to predict the user's interest. In this paper we give an overview of a platform developed to evaluate and visualize implicit feedback of a person who reads a text. Based on the eye-movement samples provided, a model is trained that could be used to predict comprehensibility of a user reading a text. This prediction is combined with objective complexity evaluation of the text using data mining methods, and the outcome is used to select a text (from a repository) that a user may find more valuable (interesting). We briefly discuss the requirements, architecture and implementation of this platform.","PeriodicalId":263115,"journal":{"name":"Proceedings of the 36th European Conference on Cognitive Ergonomics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th European Conference on Cognitive Ergonomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232078.3232099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large amounts of information are nowadays easily obtainable using the Internet, and using implicit feedback whether a reader finds a text interesting is desirable. Eye-tracking technology could be used for such a feedback, and a combination of eye-movement features and a textual complexity measure can be used to predict the user's interest. In this paper we give an overview of a platform developed to evaluate and visualize implicit feedback of a person who reads a text. Based on the eye-movement samples provided, a model is trained that could be used to predict comprehensibility of a user reading a text. This prediction is combined with objective complexity evaluation of the text using data mining methods, and the outcome is used to select a text (from a repository) that a user may find more valuable (interesting). We briefly discuss the requirements, architecture and implementation of this platform.
基于眼动追踪的读者内隐反馈评价平台
如今,大量的信息很容易通过互联网获得,使用隐式反馈来判断读者是否对某篇文章感兴趣是可取的。这种反馈可以使用眼球追踪技术,并结合眼球运动特征和文本复杂性度量来预测用户的兴趣。在本文中,我们给出了一个平台的概述,该平台用于评估和可视化阅读文本的人的隐式反馈。基于提供的眼动样本,训练一个模型,该模型可用于预测用户阅读文本的可理解性。该预测与使用数据挖掘方法对文本进行客观复杂性评估相结合,结果用于(从存储库)选择用户可能认为更有价值(感兴趣)的文本。我们简要地讨论了该平台的需求、体系结构和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信