An Algorithm for Classifying Incomplete Data with Selective Bayes Classifiers

Jingnian Chen, Xiaoping Xue, Fengzhan Tian, Houkuan Huang
{"title":"An Algorithm for Classifying Incomplete Data with Selective Bayes Classifiers","authors":"Jingnian Chen, Xiaoping Xue, Fengzhan Tian, Houkuan Huang","doi":"10.1109/CIS.WORKSHOPS.2007.160","DOIUrl":null,"url":null,"abstract":"Actual data sets are often incomplete because of various kinds of reason. Although many algorithms for classification have been proposed, most of them deal with complete data. So methods of constructing classifiers for incomplete data deserve more attention. By analyzing main methods of processing incomplete data for classification, this paper presents a selective Bayes classifier for classifying incomplete data. The proposed algorithm needs no assumption about data sets that are necessary for previous methods of processing incomplete data. Experiments on twelve benchmark incomplete data sets show that this algorithm can greatly improve the accuracy of classification. Furthermore, it can also sharply reduce the number of attributes and so can greatly simplify the data sets and classifiers.","PeriodicalId":409737,"journal":{"name":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Intelligence and Security Workshops (CISW 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.WORKSHOPS.2007.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Actual data sets are often incomplete because of various kinds of reason. Although many algorithms for classification have been proposed, most of them deal with complete data. So methods of constructing classifiers for incomplete data deserve more attention. By analyzing main methods of processing incomplete data for classification, this paper presents a selective Bayes classifier for classifying incomplete data. The proposed algorithm needs no assumption about data sets that are necessary for previous methods of processing incomplete data. Experiments on twelve benchmark incomplete data sets show that this algorithm can greatly improve the accuracy of classification. Furthermore, it can also sharply reduce the number of attributes and so can greatly simplify the data sets and classifiers.
一种基于选择性贝叶斯分类器的不完全数据分类算法
由于各种原因,实际数据集往往是不完整的。虽然已经提出了许多分类算法,但大多数算法都是处理完整数据的。因此,构建不完整数据分类器的方法值得关注。通过分析目前处理不完整数据进行分类的主要方法,提出了一种用于不完整数据分类的选择性贝叶斯分类器。该算法不需要对以前处理不完整数据的方法所必需的数据集进行假设。在12个基准不完全数据集上进行的实验表明,该算法可以大大提高分类的准确率。此外,它还可以大幅减少属性的数量,从而大大简化数据集和分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信