FuzzTastic

Stephan Lipp, Daniel Elsner, T. Hutzelmann, Sebastian Banescu, A. Pretschner, Marcel Böhme
{"title":"FuzzTastic","authors":"Stephan Lipp, Daniel Elsner, T. Hutzelmann, Sebastian Banescu, A. Pretschner, Marcel Böhme","doi":"10.1145/3510454.3516847","DOIUrl":null,"url":null,"abstract":"Performing sound and fair fuzzer evaluations can be challenging, not only because of the randomness involved in fuzzing, but also due to the large number of fuzz tests generated. Existing evaluations use code coverage as a proxy measure for fuzzing effectiveness. Yet, instead of considering coverage of all generated fuzz inputs, they only consider the inputs stored in the fuzzer queue. However, as we show in this paper, this approach can lead to biased assessments due to path collisions. Therefore, we developed FuzzTastic, a fuzzer-agnostic coverage analyzer that allows practitioners and researchers to perform uniform fuzzer evaluations that are not affected by such collisions. In addition, its time-stamped coverage-probing approach enables frequency-based coverage analysis to identify barely tested source code and to visualize fuzzing progress over time and across code. To foster further studies in this field, we make FuzzTastic, together with a benchmark dataset worth ~12 CPU-years of fuzzing, publicly available; the demo video can be found at https://youtu.be/Lm-eBx0aePA.","PeriodicalId":326006,"journal":{"name":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510454.3516847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Performing sound and fair fuzzer evaluations can be challenging, not only because of the randomness involved in fuzzing, but also due to the large number of fuzz tests generated. Existing evaluations use code coverage as a proxy measure for fuzzing effectiveness. Yet, instead of considering coverage of all generated fuzz inputs, they only consider the inputs stored in the fuzzer queue. However, as we show in this paper, this approach can lead to biased assessments due to path collisions. Therefore, we developed FuzzTastic, a fuzzer-agnostic coverage analyzer that allows practitioners and researchers to perform uniform fuzzer evaluations that are not affected by such collisions. In addition, its time-stamped coverage-probing approach enables frequency-based coverage analysis to identify barely tested source code and to visualize fuzzing progress over time and across code. To foster further studies in this field, we make FuzzTastic, together with a benchmark dataset worth ~12 CPU-years of fuzzing, publicly available; the demo video can be found at https://youtu.be/Lm-eBx0aePA.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信