Depression tendency detection model for Weibo users based on Bi-LSTM

Xing Hu, Jian Shu, Zhaoyu Jin
{"title":"Depression tendency detection model for Weibo users based on Bi-LSTM","authors":"Xing Hu, Jian Shu, Zhaoyu Jin","doi":"10.1109/ICAICA52286.2021.9497931","DOIUrl":null,"url":null,"abstract":"Depression will have a severe impact on social harmony and family happiness. Aiming at users Weibo users, this paper explores the use of deep learning methods. Based on the sentence sentiment analysis task, we propose a depression tendency detection model for Weibo users based on Bi-LSTM. Firstly, Use the Skip-Gram model in Word2Vec to vectorize the text. Adopt Bi-LSTM neural network layer. Through the bidirectional transmission, semantic dependence of capture context, mining the content characteristics of Weibo text. Finally, the text sentiment category is classified through the fully connected layer. The experimental results show that this method can effectively detect the depression tendency for Weibo users.","PeriodicalId":121979,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA52286.2021.9497931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Depression will have a severe impact on social harmony and family happiness. Aiming at users Weibo users, this paper explores the use of deep learning methods. Based on the sentence sentiment analysis task, we propose a depression tendency detection model for Weibo users based on Bi-LSTM. Firstly, Use the Skip-Gram model in Word2Vec to vectorize the text. Adopt Bi-LSTM neural network layer. Through the bidirectional transmission, semantic dependence of capture context, mining the content characteristics of Weibo text. Finally, the text sentiment category is classified through the fully connected layer. The experimental results show that this method can effectively detect the depression tendency for Weibo users.
基于Bi-LSTM的微博用户抑郁倾向检测模型
抑郁症会严重影响社会和谐和家庭幸福。针对微博用户,本文探索了深度学习方法的使用。基于句子情感分析任务,提出了一种基于Bi-LSTM的微博用户抑郁倾向检测模型。首先,使用Word2Vec中的Skip-Gram模型对文本进行矢量化。采用Bi-LSTM神经网络层。通过双向传递,捕获上下文的语义依赖,挖掘微博文本的内容特征。最后,通过全连通层对文本情感类别进行分类。实验结果表明,该方法可以有效地检测微博用户的抑郁倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信