Multi-Component Spatiotemporal Attention and its Application to Object Detection in Surveillance Videos

Roman Palenychka, R. Abielmona, F. Rea, E. Petriu
{"title":"Multi-Component Spatiotemporal Attention and its Application to Object Detection in Surveillance Videos","authors":"Roman Palenychka, R. Abielmona, F. Rea, E. Petriu","doi":"10.1109/AVSS.2019.8909874","DOIUrl":null,"url":null,"abstract":"This paper describes multi-component spatiotemporal attention mechanisms in application to object detection in videos. The detection of objects of interest relies on the analysis of feature-point areas (FPAs), which correspond to the object-relevant focus-of-attention (FoA) points extracted by the proposed spatiotemporal mechanisms of attention focusing. The attention mechanisms give detection priority to object-relevant FPAs with spatial saliency, spatiotemporal coherence, and area temporal change including motion. The preliminary test results of the proposed attention focusing mechanisms for object detection and tracking have confirmed its advantage in terms of robustness over existing visual attention-based detectors with comparable run-times.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes multi-component spatiotemporal attention mechanisms in application to object detection in videos. The detection of objects of interest relies on the analysis of feature-point areas (FPAs), which correspond to the object-relevant focus-of-attention (FoA) points extracted by the proposed spatiotemporal mechanisms of attention focusing. The attention mechanisms give detection priority to object-relevant FPAs with spatial saliency, spatiotemporal coherence, and area temporal change including motion. The preliminary test results of the proposed attention focusing mechanisms for object detection and tracking have confirmed its advantage in terms of robustness over existing visual attention-based detectors with comparable run-times.
多分量时空注意力及其在监控视频目标检测中的应用
本文描述了多分量时空注意机制在视频目标检测中的应用。感兴趣目标的检测依赖于特征点区域(fpa)的分析,fpa对应于通过提出的注意聚焦时空机制提取的与目标相关的注意焦点(FoA)点。注意机制优先检测具有空间显著性、时空相干性和包括运动在内的区域时间变化的物体相关fpa。所提出的注意力聚焦机制在目标检测和跟踪方面的初步测试结果证实了其在鲁棒性方面优于现有的基于视觉注意力的检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信