Visualizing Demographics Based on Micro-blogger Tracking: Twitter Case Study

Khaled Ahmed, N. Tazi, A. Hossny
{"title":"Visualizing Demographics Based on Micro-blogger Tracking: Twitter Case Study","authors":"Khaled Ahmed, N. Tazi, A. Hossny","doi":"10.1109/ICCTA35431.2014.9521646","DOIUrl":null,"url":null,"abstract":"Social media contains a lot of useful information that express different aspects of the society using unstructured and temporal data. The main challenge with social media is the huge amount of the data streams to be processed. Such huge data requires huge processing capabilities, including the power, time and cost.This research presents a framework to extract, analyze and visualize the demographics of any country using the micro blogger data streams such as twitter. This increases the ability to search for topics with hash tags per city for a specific country as well as applying data mining techniques. The proposed framework uses big data tools including Hadoop and Hive to analyze the huge amount of textual unstructured data that is extracted from twitter then visualize it as needed.","PeriodicalId":162170,"journal":{"name":"2014 24th International Conference on Computer Theory and Applications (ICCTA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA35431.2014.9521646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media contains a lot of useful information that express different aspects of the society using unstructured and temporal data. The main challenge with social media is the huge amount of the data streams to be processed. Such huge data requires huge processing capabilities, including the power, time and cost.This research presents a framework to extract, analyze and visualize the demographics of any country using the micro blogger data streams such as twitter. This increases the ability to search for topics with hash tags per city for a specific country as well as applying data mining techniques. The proposed framework uses big data tools including Hadoop and Hive to analyze the huge amount of textual unstructured data that is extracted from twitter then visualize it as needed.
基于微博跟踪的人口统计可视化:Twitter案例研究
社交媒体包含了大量有用的信息,这些信息使用非结构化和时间数据来表达社会的不同方面。社交媒体面临的主要挑战是需要处理的大量数据流。如此庞大的数据需要巨大的处理能力,包括功率、时间和成本。本研究提出了一个框架来提取,分析和可视化任何国家的人口统计数据使用微博数据流,如twitter。这增加了在特定国家的每个城市使用散列标签搜索主题以及应用数据挖掘技术的能力。提出的框架使用包括Hadoop和Hive在内的大数据工具来分析从twitter中提取的大量文本非结构化数据,然后根据需要将其可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信