{"title":"The application of integral equations to calculation of diffraction on inhomogeneities in lightguide structures","authors":"A. Lerer, G. Kalinchenko","doi":"10.1109/ICTON.2000.874123","DOIUrl":null,"url":null,"abstract":"The numerical code for the simulating of electric fields scattered on two-dimensional bodies of arbitrary shape and either law of nonlinearity is elaborated. In this paper we present results of calculations for cylinders of elliptical cross-section and quadratic nonlinearity law. Due to good convergence of series and integrals it is enough to sum 20-30 terms in series and numerical quadrature to get a deviation up to 0.1%. In this paper we have simulated the power transmitting coefficients for diffraction on: 1) grating made of dielectric rods; 2) dielectric rod set inside of a planar metallic waveguide; 3) dielectric rod situated next to a dielectric planar waveguide layer.","PeriodicalId":314041,"journal":{"name":"2000 2nd International Conference on Transparent Optical Networks. Conference Proceedings (Cat. No.00EX408)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 2nd International Conference on Transparent Optical Networks. Conference Proceedings (Cat. No.00EX408)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2000.874123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The numerical code for the simulating of electric fields scattered on two-dimensional bodies of arbitrary shape and either law of nonlinearity is elaborated. In this paper we present results of calculations for cylinders of elliptical cross-section and quadratic nonlinearity law. Due to good convergence of series and integrals it is enough to sum 20-30 terms in series and numerical quadrature to get a deviation up to 0.1%. In this paper we have simulated the power transmitting coefficients for diffraction on: 1) grating made of dielectric rods; 2) dielectric rod set inside of a planar metallic waveguide; 3) dielectric rod situated next to a dielectric planar waveguide layer.