Pose graph for improved monocular visual odometry

P. Kicman, J. Narkiewicz
{"title":"Pose graph for improved monocular visual odometry","authors":"P. Kicman, J. Narkiewicz","doi":"10.1109/MMAR.2014.6957413","DOIUrl":null,"url":null,"abstract":"In this paper the monocular visual odometry algorithm augmented with pose graph optimization is presented. The algorithm was tested using five different combinations of feature extractors and descriptors and evaluated using two challenging datasets from KITTI database. The main result of this study is that the implementation of pose graph optimization may lead to reduction of position error ranging between 1.53% to 76.05%. The error reduction depends on a feature type and dataset used.","PeriodicalId":166287,"journal":{"name":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2014.6957413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper the monocular visual odometry algorithm augmented with pose graph optimization is presented. The algorithm was tested using five different combinations of feature extractors and descriptors and evaluated using two challenging datasets from KITTI database. The main result of this study is that the implementation of pose graph optimization may lead to reduction of position error ranging between 1.53% to 76.05%. The error reduction depends on a feature type and dataset used.
改进单目视觉里程计的位姿图
本文提出了一种增强位姿图优化的单目视觉测程算法。该算法使用五种不同的特征提取器和描述符组合进行了测试,并使用KITTI数据库的两个具有挑战性的数据集进行了评估。本研究的主要结果是,位姿图优化的实施可使位置误差降低1.53% ~ 76.05%。减少误差取决于特征类型和使用的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信