Unsupervised Face Synthesis Based on Human Traits

Roberto Leyva, G. Epiphaniou, C. Maple, Victor Sanchez
{"title":"Unsupervised Face Synthesis Based on Human Traits","authors":"Roberto Leyva, G. Epiphaniou, C. Maple, Victor Sanchez","doi":"10.1109/IWBF57495.2023.10157232","DOIUrl":null,"url":null,"abstract":"This paper presents a strategy to synthesize face images based on human traits. Specifically, the strategy allows synthesizing face images with similar age, gender, and ethnicity, after discovering groups of people with similar facial features. Our synthesizer is based on unsupervised learning and is capable to generate realistic faces. Our experiments reveal that grouping the training samples according to their similarity can lead to more realistic face images while having semantic control over the synthesis. The proposed strategy achieves competitive performance compared to the state-of-the-art and outperforms the baseline in terms of the Frechet Inception Distance.","PeriodicalId":273412,"journal":{"name":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF57495.2023.10157232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a strategy to synthesize face images based on human traits. Specifically, the strategy allows synthesizing face images with similar age, gender, and ethnicity, after discovering groups of people with similar facial features. Our synthesizer is based on unsupervised learning and is capable to generate realistic faces. Our experiments reveal that grouping the training samples according to their similarity can lead to more realistic face images while having semantic control over the synthesis. The proposed strategy achieves competitive performance compared to the state-of-the-art and outperforms the baseline in terms of the Frechet Inception Distance.
基于人类特征的无监督人脸合成
提出了一种基于人脸特征的人脸图像合成策略。具体来说,该策略允许在发现具有相似面部特征的人群后,合成具有相似年龄、性别和种族的人脸图像。我们的合成器基于无监督学习,能够生成逼真的人脸。我们的实验表明,根据相似度对训练样本进行分组可以获得更逼真的人脸图像,同时对合成具有语义控制。与最先进的技术相比,拟议的战略实现了具有竞争力的性能,并且在Frechet初始距离方面优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信