David Excell, A. Taylan Cemgil, William J. Fitzgerald
{"title":"Generative Model for Human Motion Recognition","authors":"David Excell, A. Taylan Cemgil, William J. Fitzgerald","doi":"10.1109/ISPA.2007.4383731","DOIUrl":null,"url":null,"abstract":"This paper describes a generative Bayesian model designed to track an articulated 3D human skeleton in an image sequence. The model infers the subjects appearance, pose, and movement. This technique provides a novel method for implicity modelling depth and self occlusion, two issues that have been identified as drawbacks of existing models. We also employ a switching linear dynamical system to efficiently propose skeleton configurations. The model is verified using synthetic data. A video clip from the Caviar data set is used to demonstrate the potential of the methodology for tracking on real data.","PeriodicalId":112420,"journal":{"name":"2007 5th International Symposium on Image and Signal Processing and Analysis","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2007.4383731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes a generative Bayesian model designed to track an articulated 3D human skeleton in an image sequence. The model infers the subjects appearance, pose, and movement. This technique provides a novel method for implicity modelling depth and self occlusion, two issues that have been identified as drawbacks of existing models. We also employ a switching linear dynamical system to efficiently propose skeleton configurations. The model is verified using synthetic data. A video clip from the Caviar data set is used to demonstrate the potential of the methodology for tracking on real data.