Data Clustering Based on Data Transformation and Hybrid Step Size-Based Cuckoo Search

A. Pandey, D. Rajpoot, M. Saraswat
{"title":"Data Clustering Based on Data Transformation and Hybrid Step Size-Based Cuckoo Search","authors":"A. Pandey, D. Rajpoot, M. Saraswat","doi":"10.1109/IC3.2018.8530571","DOIUrl":null,"url":null,"abstract":"Data clustering is a prominent analytic method which discovers the clusters in a dataset based on some similarity measures. Since, clustering is a NP-hard problem, thus it is difficult to find optimal cluster for large and high dimensional dataset using traditional methods. Therefore, this paper introduces a data clustering method based on data transformation and hybrid step size based cuckoo search method (HSCS). Data transformation method uses PCA and ICA for transformation of data which is further used by HSCS method for clustering. The performance of the proposed method has been tested on the six benchmark datasets taken from UCI repository and compared with cuckoo search, particle swarm optimization, differential evolution, and improved cuckoo search.","PeriodicalId":118388,"journal":{"name":"2018 Eleventh International Conference on Contemporary Computing (IC3)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2018.8530571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data clustering is a prominent analytic method which discovers the clusters in a dataset based on some similarity measures. Since, clustering is a NP-hard problem, thus it is difficult to find optimal cluster for large and high dimensional dataset using traditional methods. Therefore, this paper introduces a data clustering method based on data transformation and hybrid step size based cuckoo search method (HSCS). Data transformation method uses PCA and ICA for transformation of data which is further used by HSCS method for clustering. The performance of the proposed method has been tested on the six benchmark datasets taken from UCI repository and compared with cuckoo search, particle swarm optimization, differential evolution, and improved cuckoo search.
基于数据转换和混合步长布谷鸟搜索的数据聚类
数据聚类是一种重要的分析方法,它基于一些相似性度量来发现数据集中的聚类。由于聚类是一个np困难问题,因此使用传统方法很难找到大型高维数据集的最优聚类。为此,本文提出了一种基于数据变换和基于混合步长的布谷鸟搜索方法(HSCS)的数据聚类方法。数据变换方法采用PCA和ICA对数据进行变换,再采用HSCS方法进行聚类。在UCI知识库的6个基准数据集上测试了该方法的性能,并与布谷鸟搜索、粒子群优化、差分进化和改进布谷鸟搜索进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信