Type your matrices for great good: a Haskell library of typed matrices and applications (functional pearl)

Armando Santos, J. Oliveira
{"title":"Type your matrices for great good: a Haskell library of typed matrices and applications (functional pearl)","authors":"Armando Santos, J. Oliveira","doi":"10.1145/3406088.3409019","DOIUrl":null,"url":null,"abstract":"We study a simple inductive data type for representing correct-by-construction matrices. Despite its simplicity, it can be used to implement matrix-manipulation algorithms efficiently and safely, performing in some cases faster than existing alternatives even though the algorithms are written in a direct and purely functional style. A rich collection of laws makes it possible to derive and optimise these algorithms using equational reasoning, avoiding the notorious off-by-one indexing errors when fiddling with matrix dimensions. We demonstrate the usefulness of the data type on several examples, and highlight connections to related topics in category theory.","PeriodicalId":242706,"journal":{"name":"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3406088.3409019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study a simple inductive data type for representing correct-by-construction matrices. Despite its simplicity, it can be used to implement matrix-manipulation algorithms efficiently and safely, performing in some cases faster than existing alternatives even though the algorithms are written in a direct and purely functional style. A rich collection of laws makes it possible to derive and optimise these algorithms using equational reasoning, avoiding the notorious off-by-one indexing errors when fiddling with matrix dimensions. We demonstrate the usefulness of the data type on several examples, and highlight connections to related topics in category theory.
为您的矩阵提供良好的类型:类型矩阵和应用程序的Haskell库(功能珍珠)
我们研究了一种表示构造正确矩阵的简单归纳数据类型。尽管它很简单,但它可以用来高效安全地实现矩阵操作算法,在某些情况下,即使算法是以直接和纯函数式的方式编写的,也比现有的替代方案执行得更快。丰富的定律集合使得使用等式推理推导和优化这些算法成为可能,避免了在摆弄矩阵维度时臭名昭著的偏离1的索引错误。我们在几个例子上展示了数据类型的有用性,并强调了与范畴论中相关主题的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信