Non-Negative Matrix Factorization via Low-Rank Stochastic Manifold Optimization

Ahmed Douik, B. Hassibi
{"title":"Non-Negative Matrix Factorization via Low-Rank Stochastic Manifold Optimization","authors":"Ahmed Douik, B. Hassibi","doi":"10.1109/ITA50056.2020.9244937","DOIUrl":null,"url":null,"abstract":"Several real-world applications, notably in non-negative matrix factorization, graph-based clustering, and machine learning, require solving a convex optimization problem over the set of stochastic and doubly stochastic matrices. A common feature of these problems is that the optimal solution is generally a low-rank matrix. This paper suggests reformulating the problem by taking advantage of the low-rank factorization X = UVT and develops a Riemannian optimization framework for solving optimization problems on the set of low-rank stochastic and doubly stochastic matrices. In particular, this paper introduces and studies the geometry of the low-rank stochastic multinomial and the doubly stochastic manifold in order to derive first-order optimization algorithms. Being carefully designed and of lower dimension than the original problem, the proposed Riemannian optimization framework presents a clear complexity advantage. The claim is attested through numerical experiments on real-world and synthetic data for Non-negative Matrix Factorization (NFM) applications. The proposed algorithm is shown to outperform, in terms of running time, state-of-the-art methods for NFM.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several real-world applications, notably in non-negative matrix factorization, graph-based clustering, and machine learning, require solving a convex optimization problem over the set of stochastic and doubly stochastic matrices. A common feature of these problems is that the optimal solution is generally a low-rank matrix. This paper suggests reformulating the problem by taking advantage of the low-rank factorization X = UVT and develops a Riemannian optimization framework for solving optimization problems on the set of low-rank stochastic and doubly stochastic matrices. In particular, this paper introduces and studies the geometry of the low-rank stochastic multinomial and the doubly stochastic manifold in order to derive first-order optimization algorithms. Being carefully designed and of lower dimension than the original problem, the proposed Riemannian optimization framework presents a clear complexity advantage. The claim is attested through numerical experiments on real-world and synthetic data for Non-negative Matrix Factorization (NFM) applications. The proposed algorithm is shown to outperform, in terms of running time, state-of-the-art methods for NFM.
基于低秩随机流形优化的非负矩阵分解
一些现实世界的应用,特别是在非负矩阵分解、基于图的聚类和机器学习中,需要解决随机和双随机矩阵集合上的凸优化问题。这些问题的一个共同特征是最优解通常是一个低秩矩阵。本文利用低秩分解X = UVT对问题进行了重新表述,并建立了求解低秩随机和双随机矩阵集合上的优化问题的黎曼优化框架。本文特别介绍和研究了低秩随机多项式和双随机流形的几何性质,从而推导出一阶优化算法。所提出的黎曼优化框架经过精心设计,比原问题的维数更低,具有明显的复杂性优势。通过非负矩阵分解(NFM)应用的真实世界和合成数据的数值实验证明了这一说法。就运行时间而言,所提出的算法优于NFM的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信