Chapter 3: The Sign Corrected Midpoint Decision Variable Selects the Candidate Point with the Minimum Euclidean Distance to the Conic

V. Huypens
{"title":"Chapter 3: The Sign Corrected Midpoint Decision Variable Selects the Candidate Point with the Minimum Euclidean Distance to the Conic","authors":"V. Huypens","doi":"10.1109/GMAI.2008.8","DOIUrl":null,"url":null,"abstract":"You can expect many new things: 1. An efficient 8-connected algorithm calculating the minimum Euclidean distance to the conic. 2. Bounding the Euclidean distance with the arithmetic mean and midpoint decision variable. 3. Highlighting the out-of-tolerance cases and the formulation of a solution. 4. Restore the renounced two-point decision variable(s). 5. Clear up the midpoint decision variable, by introducing the polar-line of the conic.","PeriodicalId":393559,"journal":{"name":"2008 3rd International Conference on Geometric Modeling and Imaging","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Geometric Modeling and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2008.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

You can expect many new things: 1. An efficient 8-connected algorithm calculating the minimum Euclidean distance to the conic. 2. Bounding the Euclidean distance with the arithmetic mean and midpoint decision variable. 3. Highlighting the out-of-tolerance cases and the formulation of a solution. 4. Restore the renounced two-point decision variable(s). 5. Clear up the midpoint decision variable, by introducing the polar-line of the conic.
第三章:正号修正中点决策变量选取到二次曲线的欧氏距离最小的候选点
你可以期待许多新的东西:一种计算到二次曲线的最小欧几里得距离的高效8连通算法。2. 用算术平均值和中点决定变量限定欧几里得距离。3.突出显示超出容忍范围的情况和解决方案的制定。4. 恢复放弃的两点决策变量。5. 通过引入二次曲线的极线,明确了中点决策变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信