{"title":"Profiling the Natural Environment Using Acoustics: Long-Term Environment Monitoring through Cluster Structure","authors":"Adikarige Madanayake, M. Sankupellay, Ickjai Lee","doi":"10.1145/3378936.3378946","DOIUrl":null,"url":null,"abstract":"Eco-acoustic recordings of the natural environment are becoming an increasingly important technique for ecologists to monitor and interpret long-term terrestrial ecosystems. Visualisation has been a popular approach to analyse short-term eco-acoustic recordings, but it is practically not feasible for long-term monitoring. Unsupervised machine learning could be a solid candidate to find clustering structures within this long-term eco-acoustic data, and this paper investigates if unsupervised machine learning is able to find any clustering structural difference around an important environmental event, in particular with k-means clustering. Experimental results reveal that there are clear clustering structural changes in general geophony and biophony sounds before and after a bushfire in our study region which indicates that clustering approaches could be used to identify important environmental events.","PeriodicalId":304149,"journal":{"name":"Proceedings of the 3rd International Conference on Software Engineering and Information Management","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Software Engineering and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378936.3378946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Eco-acoustic recordings of the natural environment are becoming an increasingly important technique for ecologists to monitor and interpret long-term terrestrial ecosystems. Visualisation has been a popular approach to analyse short-term eco-acoustic recordings, but it is practically not feasible for long-term monitoring. Unsupervised machine learning could be a solid candidate to find clustering structures within this long-term eco-acoustic data, and this paper investigates if unsupervised machine learning is able to find any clustering structural difference around an important environmental event, in particular with k-means clustering. Experimental results reveal that there are clear clustering structural changes in general geophony and biophony sounds before and after a bushfire in our study region which indicates that clustering approaches could be used to identify important environmental events.